Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2
Tianling Ou, Huihui Mou, Lizhou Zhang, Amrita Ojha, Hyeryun Choe, Michael Farzan
PLOS Pathogens, doi:10.1371/journal.ppat.1009212
Hydroxychloroquine, used to treat malaria and some autoimmune disorders, potently inhibits viral infection of SARS coronavirus (SARS-CoV-1) and SARS-CoV-2 in cell-culture studies. However, human clinical trials of hydroxychloroquine failed to establish its usefulness as treatment for COVID-19. This compound is known to interfere with endosomal acidification necessary to the proteolytic activity of cathepsins. Following receptor binding and endocytosis, cathepsin L can cleave the SARS-CoV-1 and SARS-CoV-2 spike (S) proteins, thereby activating membrane fusion for cell entry. The plasma membrane-associated protease TMPRSS2 can similarly cleave these S proteins and activate viral entry at the cell surface. Here we show that the SARS-CoV-2 entry process is more dependent than that of SARS-CoV-1 on TMPRSS2 expression. This difference can be reversed when the furincleavage site of the SARS-CoV-2 S protein is ablated or when it is introduced into the SARS-CoV-1 S protein. We also show that hydroxychloroquine efficiently blocks viral entry mediated by cathepsin L, but not by TMPRSS2, and that a combination of hydroxychloroquine and a clinically-tested TMPRSS2 inhibitor prevents SARS-CoV-2 infection more potently than either drug alone. These studies identify functional differences between SARS-CoV-1 and -2 entry processes, and provide a mechanistic explanation for the limited in vivo utility of hydroxychloroquine as a treatment for COVID-19.
media containing 2% FBS. Same infection procedures were applied on other cell lines without the plate coating and transfection steps.
Cell surface expression and S protein analysis To measure surface TMPRSS2 expression of 293T-ACE2 transiently transfected with TMPRSS2 and the stable cell line 293T/ACE2/TMPRSS2, cells were detached by 1mM EDTA in PBS and then stained by 2 ug/ml of anti-Flag M2 antibody (Sigma-Aldrich, F1804) and 2 μg/ml of goat anti-mouse IgG (H+L) conjugated with Alexa 647 (Jackson ImmunoResearch Laboratories, #115-606-146). Flow cytometry analysis was done using Accuri C6 (BD Biosciences). To measure the endogenous TMPRSS2 expression of Vero, H1299, H1975 and Calu-3 cells, cells were permeabilized with PBS including 0.5% Triton X-100 (Sigma-Aldrich) at room temperature for 10 min, and detected by 2 μg/ml monoclonal rabbit Anti-TMPRSS2 antibody [EPR3861] (Abcam, ab92323) and goat anti-rabbit IgG conjugated with HRP (Sigma-Aldrich, A0545). To determine the cleavage of S proteins, 293T cells were transfected with 2 μL of lipofectamine 2000 (Life Technologies) in complex with 1 μg plasmid expressing the indicated S protein variant. Cells were harvested for western blot analysis 48 hours post transfection. Cells were permeabilized with PBS including 0.5% Triton X-100 (Sigma-Aldrich) at room temperature for 10 min, and detected by 1 μg/ml anti-Flag M2 antibody (Sigma-Aldrich, F1804) and goat anti-mouse IgG (Fab only) conjugated with HRP (Sigma-Aldrich, A9917).
..
References
Belouzard, Chu, Whittaker, Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites, Proceedings of the National Academy of Sciences,
doi:10.1073/pnas.0809524106
Bertram, Heurich, Lavender, Gierer, Danisch et al., Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts, PloS one,
doi:10.1371/journal.pone.0035876
Bo ¨ttcher, Matrosovich, Beyerle, Klenk, Garten et al., Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium, Journal of virology,
doi:10.1128/JVI.01118-06
Boulware, Pullen, Bangdiwala, Pastick, Lofgren et al., A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19, New England Journal of Medicine
Chen, Hu, Zhang, Jiang, Han et al., Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial, MedRxiv,
doi:10.1001/jama.2020.22240
Chen, Liu, Liu, Liu, Xu et al., A pilot study of hydroxychloroquine in treatment of patients with moderate COVID-19, Zhejiang da xue xue bao Yi xue ban = Journal of Zhejiang University Medical sciences,
doi:10.3785/j.issn.1008-9292.2020.03.03
Coutard, Valle, De Lamballerie, Canard, Seidah et al., The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade, Antiviral research,
doi:10.1016/j.antiviral.2020.104742
Gautret, Lagier, Parola, Meddeb, Mailhe et al., Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial, International journal of antimicrobial agents,
doi:10.1016/j.ijantimicag.2020.105949
Geleris, Sun, Platt, Zucker, Baldwin et al., Observational study of hydroxychloroquine in hospitalized patients with Covid-19, New England Journal of Medicine,
doi:10.1056/NEJMoa2012410
Glowacka, Bertram, Mu ¨ller, Soilleux, Pfefferle, Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response, Journal of virology,
doi:10.1128/JVI.02232-10
Hasan, Paray, Hussain, Qadir, Attar et al., A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin, Journal of Biomolecular Structure and Dynamics,
doi:10.1080/07391102.2020.1754293
Hoffmann, Kleine-Weber, Schroeder, Kru ¨ger, Herrler et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell,
doi:10.1016/j.cell.2020.02.052
Keyaerts, Vijgen, Maes, Neyts, Van Ranst, In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine, Biochemical,
doi:10.1016/j.bbrc.2004.08.085
Li, Greenough, Moore, Vasilieva, Somasundaran et al., Efficient replication of severe acute respiratory syndrome coronavirus in mouse cells is limited by murine angiotensin-converting enzyme 2, Journal of virology,
doi:10.1128/JVI.78.20.11429-11433.2004
Li, Moore, Vasilieva, Sui, Wong et al., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature,
doi:10.1038/nature02145
Liu, Cao, Xu, Wang, Zhang et al., Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro, Cell discovery,
doi:10.1038/s41421-019-0132-8
Matsuyama, Nagata, Shirato, Kawase, Takeda et al., Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2, Journal of virology,
doi:10.1128/JVI.01542-10
Millet, Whittaker, Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein, Proceedings of the National Academy of Sciences,
doi:10.1073/pnas.1407087111
Ou, Liu, Lei, Li, Mi et al., Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV, Nature communications,
doi:10.1038/s41467-019-13993-7
Qi, Qian, Zhang, Zhang, Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses, Biochemical and biophysical research communications,
doi:10.1016/j.bbrc.2020.03.044
Sanders, Monogue, Jodlowski, Cutrell, Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review, Jama,
doi:10.1001/jama.2020.6019
Savarino, Boelaert, Cassone, Majori, Cauda, Effects of chloroquine on viral infections: an old drug against today's diseases, The Lancet infectious diseases,
doi:10.1016/s1473-3099%2803%2900806-5
Shirato, Kawase, Matsuyama, Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2, Journal of virology,
doi:10.1128/JVI.01890-13
Shirato, Kawase, Matsuyama, Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry, Virology,
doi:10.1016/j.virol.2017.11.012
Simmons, Gosalia, Rennekamp, Reeves, Diamond et al., Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry, Proceedings of the National Academy of Sciences,
doi:10.1073/pnas.0505577102
Spinelli, Pellino, COVID-19 pandemic: perspectives on an unfolding crisis, The British Journal of Surgery
Sungnak, Huang, Be ´cavin, Berg, Queen et al., SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes, Nature medicine,
doi:10.1038/s41591-020-0868-6
Vincent, Bergeron, Benjannet, Erickson, Rollin et al., Chloroquine is a potent inhibitor of SARS coronavirus infection and spread, Virology journal,
doi:10.1186/1743-422X-2-69
Walls, Park, Tortorici, Wall, Mcguire et al., Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein, Cell
Wang, Cao, Zhang, Yang, Liu et al., Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell research,
doi:10.1038/s41422-020-0282-0
Wrobel, Benton, Xu, Roustan, Martin et al., SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects, Nature Structural & Molecular Biology
Yao, Ye, Zhang, Cui, Huang et al., In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Clinical Infectious Diseases
Zhang, Jackson, Mou, Ojha, Rangarajan et al., The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity, bioRxiv,
doi:10.1101/2020.06.12.148726
Zhang, Penninger, Li, Zhong, Slutsky, Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive care medicine,
doi:10.1007/s00134-020-05985-9
Zhao, Zhao, Wang, Zhou, Ma et al., Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov
Ziegler, Allon, Nyquist, Mbano, Miao et al., SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues, Cell,
doi:10.1016/j.cell.2020.04.035
Zou, Chen, Zou, Han, Hao et al., Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection, Frontiers of medicine,
doi:10.1007/s11684-020-0754-0
{ 'indexed': {'date-parts': [[2024, 5, 11]], 'date-time': '2024-05-11T15:55:50Z', 'timestamp': 1715442950445},
'update-to': [ { 'updated': { 'date-parts': [[2021, 1, 29]],
'date-time': '2021-01-29T00:00:00Z',
'timestamp': 1611878400000},
'DOI': '10.1371/journal.ppat.1009212',
'type': 'new_version',
'label': 'New version'}],
'reference-count': 41,
'publisher': 'Public Library of Science (PLoS)',
'issue': '1',
'license': [ { 'start': { 'date-parts': [[2021, 1, 19]],
'date-time': '2021-01-19T00:00:00Z',
'timestamp': 1611014400000},
'content-version': 'vor',
'delay-in-days': 0,
'URL': 'http://creativecommons.org/licenses/by/4.0/'}],
'content-domain': {'domain': ['www.plospathogens.org'], 'crossmark-restriction': False},
'abstract': '<jats:p>Hydroxychloroquine, used to treat malaria and some autoimmune disorders, potently '
'inhibits viral infection of SARS coronavirus (SARS-CoV-1) and SARS-CoV-2 in cell-culture '
'studies. However, human clinical trials of hydroxychloroquine failed to establish its '
'usefulness as treatment for COVID-19. This compound is known to interfere with endosomal '
'acidification necessary to the proteolytic activity of cathepsins. Following receptor binding '
'and endocytosis, cathepsin L can cleave the SARS-CoV-1 and SARS-CoV-2 spike (S) proteins, '
'thereby activating membrane fusion for cell entry. The plasma membrane-associated protease '
'TMPRSS2 can similarly cleave these S proteins and activate viral entry at the cell surface. '
'Here we show that the SARS-CoV-2 entry process is more dependent than that of SARS-CoV-1 on '
'TMPRSS2 expression. This difference can be reversed when the furin-cleavage site of the '
'SARS-CoV-2 S protein is ablated or when it is introduced into the SARS-CoV-1 S protein. We '
'also show that hydroxychloroquine efficiently blocks viral entry mediated by cathepsin L, but '
'not by TMPRSS2, and that a combination of hydroxychloroquine and a clinically-tested TMPRSS2 '
'inhibitor prevents SARS-CoV-2 infection more potently than either drug alone. These studies '
'identify functional differences between SARS-CoV-1 and -2 entry processes, and provide a '
'mechanistic explanation for the limited <jats:italic>in vivo</jats:italic> utility of '
'hydroxychloroquine as a treatment for COVID-19.</jats:p>',
'DOI': '10.1371/journal.ppat.1009212',
'type': 'journal-article',
'created': {'date-parts': [[2021, 1, 19]], 'date-time': '2021-01-19T18:44:20Z', 'timestamp': 1611081860000},
'page': 'e1009212',
'update-policy': 'http://dx.doi.org/10.1371/journal.ppat.corrections_policy',
'source': 'Crossref',
'is-referenced-by-count': 158,
'title': 'Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2',
'prefix': '10.1371',
'volume': '17',
'author': [ {'given': 'Tianling', 'family': 'Ou', 'sequence': 'first', 'affiliation': []},
{'given': 'Huihui', 'family': 'Mou', 'sequence': 'additional', 'affiliation': []},
{'given': 'Lizhou', 'family': 'Zhang', 'sequence': 'additional', 'affiliation': []},
{'given': 'Amrita', 'family': 'Ojha', 'sequence': 'additional', 'affiliation': []},
{'given': 'Hyeryun', 'family': 'Choe', 'sequence': 'additional', 'affiliation': []},
{ 'ORCID': 'http://orcid.org/0000-0002-2990-5319',
'authenticated-orcid': True,
'given': 'Michael',
'family': 'Farzan',
'sequence': 'additional',
'affiliation': []}],
'member': '340',
'published-online': {'date-parts': [[2021, 1, 19]]},
'reference': [ { 'key': 'ppat.1009212.ref001',
'article-title': 'COVID-19 pandemic: perspectives on an unfolding crisis',
'author': 'A Spinelli',
'year': '2020',
'journal-title': 'The British Journal of Surgery'},
{ 'issue': '18',
'key': 'ppat.1009212.ref002',
'first-page': '1824',
'article-title': 'Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a '
'review',
'volume': '323',
'author': 'JM Sanders',
'year': '2020',
'journal-title': 'Jama'},
{ 'key': 'ppat.1009212.ref003',
'article-title': 'Observational study of hydroxychloroquine in hospitalized patients with '
'Covid-19',
'author': 'J Geleris',
'year': '2020',
'journal-title': 'New England Journal of Medicine'},
{ 'issue': '2',
'key': 'ppat.1009212.ref004',
'first-page': '215',
'article-title': 'A pilot study of hydroxychloroquine in treatment of patients with '
'moderate COVID-19',
'volume': '49',
'author': 'J Chen',
'year': '2020',
'journal-title': 'Zhejiang da xue xue bao Yi xue ban = Journal of Zhejiang University '
'Medical sciences'},
{ 'key': 'ppat.1009212.ref005',
'article-title': 'Efficacy of hydroxychloroquine in patients with COVID-19: results of a '
'randomized clinical trial',
'author': 'Z Chen',
'year': '2020',
'journal-title': 'MedRxiv'},
{ 'key': 'ppat.1009212.ref006',
'doi-asserted-by': 'crossref',
'first-page': '105949',
'DOI': '10.1016/j.ijantimicag.2020.105949',
'article-title': 'Hydroxychloroquine and azithromycin as a treatment of COVID-19: results '
'of an open-label non-randomized clinical trial',
'author': 'P Gautret',
'year': '2020',
'journal-title': 'International journal of antimicrobial agents'},
{ 'key': 'ppat.1009212.ref007',
'article-title': 'A randomized trial of hydroxychloroquine as postexposure prophylaxis '
'for Covid-19',
'author': 'DR Boulware',
'year': '2020',
'journal-title': 'New England Journal of Medicine'},
{ 'key': 'ppat.1009212.ref008',
'article-title': 'In vitro antiviral activity and projection of optimized dosing design '
'of hydroxychloroquine for the treatment of severe acute respiratory '
'syndrome coronavirus 2 (SARS-CoV-2)',
'author': 'X Yao',
'year': '2020',
'journal-title': 'Clinical Infectious Diseases'},
{ 'issue': '1',
'key': 'ppat.1009212.ref009',
'first-page': '1',
'article-title': 'Hydroxychloroquine, a less toxic derivative of chloroquine, is '
'effective in inhibiting SARS-CoV-2 infection in vitro',
'volume': '6',
'author': 'J Liu',
'year': '2020',
'journal-title': 'Cell discovery'},
{ 'issue': '3',
'key': 'ppat.1009212.ref010',
'doi-asserted-by': 'crossref',
'first-page': '269',
'DOI': '10.1038/s41422-020-0282-0',
'article-title': 'Remdesivir and chloroquine effectively inhibit the recently emerged '
'novel coronavirus (2019-nCoV) in vitro',
'volume': '30',
'author': 'M Wang',
'year': '2020',
'journal-title': 'Cell research'},
{ 'issue': '1',
'key': 'ppat.1009212.ref011',
'doi-asserted-by': 'crossref',
'first-page': '69',
'DOI': '10.1186/1743-422X-2-69',
'article-title': 'Chloroquine is a potent inhibitor of SARS coronavirus infection and '
'spread',
'volume': '2',
'author': 'MJ Vincent',
'year': '2005',
'journal-title': 'Virology journal'},
{ 'issue': '1',
'key': 'ppat.1009212.ref012',
'doi-asserted-by': 'crossref',
'first-page': '264',
'DOI': '10.1016/j.bbrc.2004.08.085',
'article-title': 'In vitro inhibition of severe acute respiratory syndrome coronavirus by '
'chloroquine',
'volume': '323',
'author': 'E Keyaerts',
'year': '2004',
'journal-title': 'Biochemical and biophysical research communications'},
{ 'issue': '4',
'key': 'ppat.1009212.ref013',
'doi-asserted-by': 'crossref',
'first-page': '247',
'DOI': '10.1038/s41565-020-0674-9',
'article-title': 'Insights from nanomedicine into chloroquine efficacy against COVID-19',
'volume': '15',
'author': 'TY Hu',
'year': '2020',
'journal-title': 'Nature Nanotechnology.'},
{ 'issue': '11',
'key': 'ppat.1009212.ref014',
'doi-asserted-by': 'crossref',
'first-page': '722',
'DOI': '10.1016/S1473-3099(03)00806-5',
'article-title': "Effects of chloroquine on viral infections: an old drug against today's "
'diseases',
'volume': '3',
'author': 'A Savarino',
'year': '2003',
'journal-title': 'The Lancet infectious diseases'},
{ 'issue': '33',
'key': 'ppat.1009212.ref015',
'doi-asserted-by': 'crossref',
'first-page': '11876',
'DOI': '10.1073/pnas.0505577102',
'article-title': 'Inhibitors of cathepsin L prevent severe acute respiratory syndrome '
'coronavirus entry',
'volume': '102',
'author': 'G Simmons',
'year': '2005',
'journal-title': 'Proceedings of the National Academy of Sciences'},
{ 'issue': '1',
'key': 'ppat.1009212.ref016',
'first-page': '1',
'article-title': 'Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and '
'its immune cross-reactivity with SARS-CoV',
'volume': '11',
'author': 'X Ou',
'year': '2020',
'journal-title': 'Nature communications'},
{ 'issue': '6965',
'key': 'ppat.1009212.ref017',
'doi-asserted-by': 'crossref',
'first-page': '450',
'DOI': '10.1038/nature02145',
'article-title': 'Angiotensin-converting enzyme 2 is a functional receptor for the SARS '
'coronavirus',
'volume': '426',
'author': 'W Li',
'year': '2003',
'journal-title': 'Nature'},
{ 'issue': '4',
'key': 'ppat.1009212.ref018',
'doi-asserted-by': 'crossref',
'first-page': '586',
'DOI': '10.1007/s00134-020-05985-9',
'article-title': 'Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: '
'molecular mechanisms and potential therapeutic target',
'volume': '46',
'author': 'H Zhang',
'year': '2020',
'journal-title': 'Intensive care medicine'},
{ 'issue': '7807',
'key': 'ppat.1009212.ref019',
'doi-asserted-by': 'crossref',
'first-page': '221',
'DOI': '10.1038/s41586-020-2179-y',
'article-title': 'Structural basis of receptor recognition by SARS-CoV-2',
'volume': '581',
'author': 'J Shang',
'year': '2020',
'journal-title': 'Nature'},
{ 'issue': '14',
'key': 'ppat.1009212.ref020',
'doi-asserted-by': 'crossref',
'first-page': '5871',
'DOI': '10.1073/pnas.0809524106',
'article-title': 'Activation of the SARS coronavirus spike protein via sequential '
'proteolytic cleavage at two distinct sites',
'volume': '106',
'author': 'S Belouzard',
'year': '2009',
'journal-title': 'Proceedings of the National Academy of Sciences'},
{ 'key': 'ppat.1009212.ref021',
'article-title': 'Structure, function, and antigenicity of the SARS-CoV-2 spike '
'glycoprotein',
'author': 'AC Walls',
'year': '2020',
'journal-title': 'Cell'},
{ 'issue': '24',
'key': 'ppat.1009212.ref022',
'doi-asserted-by': 'crossref',
'first-page': '12658',
'DOI': '10.1128/JVI.01542-10',
'article-title': 'Efficient activation of the severe acute respiratory syndrome '
'coronavirus spike protein by the transmembrane protease TMPRSS2',
'volume': '84',
'author': 'S Matsuyama',
'year': '2010',
'journal-title': 'Journal of virology'},
{ 'issue': '9',
'key': 'ppat.1009212.ref023',
'doi-asserted-by': 'crossref',
'first-page': '4122',
'DOI': '10.1128/JVI.02232-10',
'article-title': 'Evidence that TMPRSS2 activates the severe acute respiratory syndrome '
'coronavirus spike protein for membrane fusion and reduces viral control '
'by the humoral immune response',
'volume': '85',
'author': 'I Glowacka',
'year': '2011',
'journal-title': 'Journal of virology'},
{ 'key': 'ppat.1009212.ref024',
'article-title': 'SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a '
'clinically proven protease inhibitor',
'author': 'M Hoffmann',
'year': '2020',
'journal-title': 'Cell'},
{ 'key': 'ppat.1009212.ref025',
'first-page': '1',
'article-title': 'A review on the cleavage priming of the spike protein on coronavirus by '
'angiotensin-converting enzyme-2 and furin',
'volume': '2020',
'author': 'A Hasan',
'journal-title': 'Journal of Biomolecular Structure and Dynamics'},
{ 'issue': '4',
'key': 'ppat.1009212.ref026',
'doi-asserted-by': 'crossref',
'DOI': '10.1371/journal.pone.0035876',
'article-title': 'Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are '
'expressed at multiple sites in human respiratory and gastrointestinal '
'tracts',
'volume': '7',
'author': 'S Bertram',
'year': '2012',
'journal-title': 'PloS one'},
{ 'issue': '5',
'key': 'ppat.1009212.ref027',
'doi-asserted-by': 'crossref',
'first-page': '681',
'DOI': '10.1038/s41591-020-0868-6',
'article-title': 'SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells '
'together with innate immune genes',
'volume': '26',
'author': 'W Sungnak',
'year': '2020',
'journal-title': 'Nature medicine'},
{ 'key': 'ppat.1009212.ref028',
'article-title': 'SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human '
'airway epithelial cells and is detected in specific cell subsets across '
'tissues',
'author': 'CG Ziegler',
'year': '2020',
'journal-title': 'Cell'},
{ 'key': 'ppat.1009212.ref029',
'article-title': 'Single-cell RNA expression profiling of ACE2, the putative receptor of '
'Wuhan 2019-nCov',
'author': 'Y Zhao',
'year': '2020',
'journal-title': 'BioRxiv'},
{ 'key': 'ppat.1009212.ref030',
'first-page': '1',
'article-title': 'Single-cell RNA-seq data analysis on the receptor ACE2 expression '
'reveals the potential risk of different human organs vulnerable to '
'2019-nCoV infection',
'volume': '2020',
'author': 'X Zou',
'journal-title': 'Frontiers of medicine'},
{ 'key': 'ppat.1009212.ref031',
'article-title': 'Single cell RNA sequencing of 13 human tissues identify cell types and '
'receptors of human coronaviruses',
'author': 'F Qi',
'year': '2020',
'journal-title': 'Biochemical and biophysical research communications'},
{ 'issue': '23',
'key': 'ppat.1009212.ref032',
'doi-asserted-by': 'crossref',
'first-page': '12552',
'DOI': '10.1128/JVI.01890-13',
'article-title': 'Middle East respiratory syndrome coronavirus infection mediated by the '
'transmembrane serine protease TMPRSS2',
'volume': '87',
'author': 'K Shirato',
'year': '2013',
'journal-title': 'Journal of virology'},
{ 'issue': '19',
'key': 'ppat.1009212.ref033',
'doi-asserted-by': 'crossref',
'first-page': '9896',
'DOI': '10.1128/JVI.01118-06',
'article-title': 'Proteolytic activation of influenza viruses by serine proteases TMPRSS2 '
'and HAT from human airway epithelium',
'volume': '80',
'author': 'E Böttcher',
'year': '2006',
'journal-title': 'Journal of virology'},
{ 'issue': '2',
'key': 'ppat.1009212.ref034',
'doi-asserted-by': 'crossref',
'first-page': '67',
'DOI': '10.1016/S1473-3099(06)70361-9',
'article-title': 'New insights into the antiviral effects of chloroquine',
'volume': '6',
'author': 'A Savarino',
'year': '2006',
'journal-title': 'The Lancet infectious diseases'},
{ 'key': 'ppat.1009212.ref035',
'article-title': 'The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding '
'and increases infectivity',
'author': 'L Zhang',
'year': '2020',
'journal-title': 'bioRxiv'},
{ 'key': 'ppat.1009212.ref036',
'doi-asserted-by': 'crossref',
'first-page': '76',
'DOI': '10.1016/j.antiviral.2015.01.011',
'article-title': 'Protease inhibitors targeting coronavirus and filovirus entry',
'volume': '116',
'author': 'Y Zhou',
'year': '2015',
'journal-title': 'Antiviral research'},
{ 'issue': '42',
'key': 'ppat.1009212.ref037',
'doi-asserted-by': 'crossref',
'first-page': '15214',
'DOI': '10.1073/pnas.1407087111',
'article-title': 'Host cell entry of Middle East respiratory syndrome coronavirus after '
'two-step, furin-mediated activation of the spike protein',
'volume': '111',
'author': 'JK Millet',
'year': '2014',
'journal-title': 'Proceedings of the National Academy of Sciences'},
{ 'key': 'ppat.1009212.ref038',
'doi-asserted-by': 'crossref',
'first-page': '9',
'DOI': '10.1016/j.virol.2017.11.012',
'article-title': 'Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal '
'cathepsins for cell entry',
'volume': '517',
'author': 'K Shirato',
'year': '2018',
'journal-title': 'Virology'},
{ 'key': 'ppat.1009212.ref039',
'doi-asserted-by': 'crossref',
'first-page': '104742',
'DOI': '10.1016/j.antiviral.2020.104742',
'article-title': 'The spike glycoprotein of the new coronavirus 2019-nCoV contains a '
'furin-like cleavage site absent in CoV of the same clade',
'volume': '176',
'author': 'B Coutard',
'year': '2020',
'journal-title': 'Antiviral research'},
{ 'key': 'ppat.1009212.ref040',
'first-page': '1',
'article-title': 'SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus '
'evolution and furin-cleavage effects.',
'volume': '2020',
'author': 'AG Wrobel',
'journal-title': 'Nature Structural & Molecular Biology'},
{ 'issue': '20',
'key': 'ppat.1009212.ref041',
'doi-asserted-by': 'crossref',
'first-page': '11429',
'DOI': '10.1128/JVI.78.20.11429-11433.2004',
'article-title': 'Efficient replication of severe acute respiratory syndrome coronavirus '
'in mouse cells is limited by murine angiotensin-converting enzyme 2',
'volume': '78',
'author': 'W Li',
'year': '2004',
'journal-title': 'Journal of virology'}],
'container-title': 'PLOS Pathogens',
'original-title': [],
'language': 'en',
'link': [ { 'URL': 'https://dx.plos.org/10.1371/journal.ppat.1009212',
'content-type': 'unspecified',
'content-version': 'vor',
'intended-application': 'similarity-checking'}],
'deposited': { 'date-parts': [[2021, 1, 29]],
'date-time': '2021-01-29T18:48:53Z',
'timestamp': 1611946133000},
'score': 1,
'resource': {'primary': {'URL': 'https://dx.plos.org/10.1371/journal.ppat.1009212'}},
'subtitle': [],
'editor': [{'given': 'Benhur', 'family': 'Lee', 'sequence': 'first', 'affiliation': []}],
'short-title': [],
'issued': {'date-parts': [[2021, 1, 19]]},
'references-count': 41,
'journal-issue': {'issue': '1', 'published-online': {'date-parts': [[2021, 1, 19]]}},
'URL': 'http://dx.doi.org/10.1371/journal.ppat.1009212',
'relation': { 'has-preprint': [ { 'id-type': 'doi',
'id': '10.1101/2020.07.22.216150',
'asserted-by': 'object'}]},
'ISSN': ['1553-7374'],
'subject': [],
'container-title-short': 'PLoS Pathog',
'published': {'date-parts': [[2021, 1, 19]]}}