Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All HCQ studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19hcq.org COVID-19 treatment researchHCQHCQ (more..)
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis    Recent:   

SIM imaging resolves endocytosis of SARS-CoV-2 spike RBD in living cells

Miao et al., Cell Chemical Biology, doi:10.1016/j.chembiol.2023.02.001
Mar 2023  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
HCQ for COVID-19
1st treatment shown to reduce risk in March 2020
 
*, now known with p < 0.00000000001 from 422 studies, recognized in 42 countries.
No treatment is 100% effective. Protocols combine complementary and synergistic treatments. * >10% efficacy in meta analysis with ≥3 clinical studies.
4,100+ studies for 60+ treatments. c19hcq.org
In Vitro study showing that the antiviral compounds bafilomycin a1 (BafA1), ammonium chloride (NH4Cl), chloroquine (CQ), hydroxychloroquine (HCQ), and dynasore trap SARS-CoV-2 on the cell surface, preventing viral entry through the endocytic pathway. Using live cell imaging with organic dye probes attached to the host receptor ACE2 and viral spike protein, authors track the viral entry pathway from the cell surface to the late endosome. Treatment with 100 nM BafA1 trapped the virus on the cell surface, with almost no virus detected in late endosomes. Other compounds including HCQ also significantly reduced the endosomal to surface virus ratio, suggesting they block endocytic viral entry.
Antiviral compounds like BafA1, NH4Cl, CQ, and HCQ were thought to trap SARS-CoV-2 in late endosomes through alkalinization mechanisms that block a critical proteolytic step needed for viral entry. However, these results suggest that alkalinization of the endosome may not be the only or primary mechanism. It is possible that both of these mechanims play a role:
- Blocking ACE2 endocytosis: the imaging data shows that compounds like HCQ can trap the virus on the cell surface by preventing the internalization of the ACE2 receptor. This suggests that inhibiting viral entry at an early stage is an important mechanism of action for these drugs.
- Endosomal alkalinization: prior studies have shown that compounds like BafA1, NH4Cl, CQ, and HCQ can raise the pH of endosomes, which is thought to inhibit the proteolytic processing needed for SARS-CoV-2 to fuse with the endosomal membrane and release its contents into the cell. The imaging data suggests this may not be the primary mechanism, however it could still play a role in inhibiting any virus particles that manage to enter endosomes, or in different cells/environments where the previous mechanism is less effective.
Note that authors did not perform dose response analysis and the single dose tested for HCQ/CQ is relatively high. Only a small percentage of patients in Ruiz et al. had ELF concentrations exceeding this dose for 400mg HCQ daily. The new mechanism of action here may require higher concentrations.
Miao et al., 31 Mar 2023, peer-reviewed, 7 authors. Contact: zcxu@dicp.ac.cn (corresponding author), zcxu@dicp.ac.cn (corresponding author).
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperHCQAll
SIM imaging resolves endocytosis of SARS-CoV-2 spike RBD in living cells
Lu Miao, Chunyu Yan, Yingzhu Chen, Wei Zhou, Xuelian Zhou, Qinglong Qiao, Zhaochao Xu
Cell Chemical Biology, doi:10.1016/j.chembiol.2023.02.001
Highlights d RBD endocytosis is resolved by imaging the location and ratio of ACE2/RBD fluorescence d Exploring the initiation and influencing factors of RBD internalization d The movement and maturation of ACE2/RBD co-localized vesicles are tracked by SIM imaging
enlightenment on the pathogenic mechanism of COVID-19 and the development of antiviral drugs, but the molecular mechanism remains to be further analyzed. STAR+METHODS Detailed methods are provided in the online version of this paper and include the following: AUTHOR CONTRIBUTIONS Concepts were conceived by Z.X. and L.M.; L.M. designed the experiments and analyzed the data; C.Y., X.Z., and L.M. performed live-cell experiments; W.Z. and Q.Q. performed compound synthesis; L.M. and Z.X. wrote the manuscript. DECLARATION OF INTERESTS The authors declare no competing interests. STAR+METHODS KEY RESOURCES
References
Angeli, Reboldi, Verdecchia, SARS-CoV-2 infection and ACE2 inhibition, J. Hypertens, doi:10.1097/HJH.0000000000002859
Angeli, Zappa, Reboldi, Trapasso, Cavallini et al., The pivotal link between ACE2 deficiency and SARS-CoV-2 infection: one year later, Eur. J. Intern. Med, doi:10.1016/j.ejim.2021.09.007
Bayati, Kumar, Francis, Mcpherson, SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis, J. Biol. Chem, doi:10.1016/j.jbc.2021.100306
Bright, Gratian, Luzio, Endocytic delivery to lysosomes mediated by concurrent fusion and kissing events in living cells, Curr. Biol, doi:10.1016/j.cub.2005.01.049
Cantuti-Castelvetri, Ojha, Pedro, Djannatian, Franz et al., Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity, Science, doi:10.1126/science.abd2985
Chen, Liu, Fang, Qiao, Xu, BODIPY 493 acts as a bright buffering fluorogenic probe for super-resolution imaging of lipid droplet dynamics, Chin. Chem. Lett, doi:10.1016/j.cclet.2022.03.120
Chen, Wang, Liu, Qiao, Qi et al., Stable super-resolution imaging of lipid droplet dynamics through a buffer strategy with a hydrogen-bond sensitive fluorogenic probe, Angew. Chem. Int. Ed. Engl, doi:10.1002/ange.202111052
Chi, Qiao, Wang, Zheng, Zhou et al., Descriptor DG(C-O) enables the quantitative design of spontaneously blinking rhodamines for live-cell super-resolution imaging, Angew. Chem. Int. Ed. Engl, doi:10.1002/ange.202010169
Clausen, Sandoval, Spliid, Pihl, Perrett et al., SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2, Cell, doi:10.1016/j.cell.2020.09.033
Deshotels, Xia, Sriramula, Lazartigues, Filipeanu, Angiotensin II mediates angiotensin converting enzyme type 2 internalization and degradation through an angiotensin ii type i receptordependent mechanism, Hypertension, doi:10.1161/HYPERTENSIONAHA.114.03743
Fang, Geng, Hao, Chen, Liu et al., Simultaneous Zn 2+ tracking in multiple organelles using super-resolution morphology-correlated organelle identification in living cells, Nat. Commun, doi:10.1038/s41467-020-20309-7
Gautier, Juillerat, Heinis, Corre ˆa, Jr et al., An engineered protein tag for multiprotein labeling in living cells, Chem. Biol, doi:10.1016/j.chembiol.2008.01.007
Ghosh, Dellibovi-Ragheb, Kerviel, Pak, Qiu et al., Beta-coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway, Cell, doi:10.1016/j.cell.2020.10.039
Gourdelier, Swain, Arone, Mouttou, Bracquemond et al., Optimized production and fluorescent labeling of SARS-CoV-2 virus-like particles, Sci. Rep, doi:10.1038/s41598-022-18681-z
Grove, Marsh, The cell biology of receptor-mediated virus entry, J. Cell Biol, doi:10.1083/jcb.201108131
Guo, Li, Zhang, Yang, Liu et al., Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales, Cell, doi:10.1016/j.cell.2018.09.057
Han, Li, Qiu, Zhang, Zhang, Cell-permeable organic fluorescent probes for live-cell long-term super-resolution imaging reveal lysosome-mitochondrion interactions, Nat. Commun, doi:10.1038/s41467-017-01503-6
Harada, Sakisaka, Yoshitake, Kin, Ohishi et al., Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPases, inhibits the receptor-mediated endocytosis of asialoglycoproteins in isolated rat hepatocytes, J. Hepatol, doi:10.1016/s0168-8278(96)80146-2
Heintzmann, Huser, Super-resolution structured illumination microscopy, Chem. Rev, doi:10.1021/acs.chemrev.7b00218
Hu, Frieman, Insights from nanomedicine into chloriquine efficacy against COVID-19, Nat. Nanotechnol, doi:10.1038/s41565-020-0674-9
Huang, Fan, Li, Liu, Wu et al., Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy, Nat. Biotechnol, doi:10.1038/nbt.4115
Jackson, Farzan, Chen, Choe, Mechanisms of SARS-CoV-2 entry into cells, Nat. Rev. Mol. Cell Biol, doi:10.1038/s41580-021-00418-x
Kaksonen, Roux, Mechanisms of clathrin-mediated endocytosis, Nat. Rev. Mol. Cell Biol, doi:10.1038/nrm.2017.132
Karthika, Joseph, Das, Nair, Charulekha et al., SARS-CoV-2 cellular entry is independent of the ACE2 cytoplasmic domain signaling, Cells, doi:10.3390/cells10071814
Lan, Ge, Yu, Shan, Zhou et al., Structure of the SARS-CoV-2 spike receptorbinding domain bound to the ACE2 receptor, Nature, doi:10.1038/s41586-020-2180-5
Lazartigues, Feng, Lavoie, The two fACEs of the tissue renin-angiotensin systems: implication in cardiovascular diseases, Curr. Pharm. Des, doi:10.2174/138161207780618911
Leng, Qiao, Miao, Deng, Cui et al., A washfree SNAP-tag fluorogenic probe based on the additive effects of quencher release and environmental sensitivity, Chem. Commun, doi:10.1039/C7CC01483J
Liu, Chen, Qiao, Liu, Xu, A TICS-fluorophore based probe for dual-color GSH imaging, Chin. Chem. Lett, doi:10.1016/j.cclet.2022.03.121
Liu, Qiao, Zheng, Chen, Zhou et al., An assembly-regulated SNAP-tag fluorogenic probe for long-term super-resolution imaging of mitochondrial dynamics, Biosens. Bioelectron, doi:10.1016/j.bios.2020.112886
Liu, Wang, Xie, Liu, Lamb et al., Single-virus tracking: from imaging methodologies to virological applications, Chem. Rev, doi:10.1021/acs.chemrev.9b00692
Liu, Zhang, Sun, Zheng, Zhang et al., Simultaneous visualization of parental and prog-eny viruses by a capsid-specific HaloTag labeling strategy, ACS Nano, doi:10.1021/acsnano.5b06438
Los, Encell, Mcdougall, Hartzell, Karassina et al., HaloTag: a novel protein labeling technology for cell imaging and protein analysis, ACS Chem. Biol, doi:10.1021/cb800025k
Lukinavi Cius, Umezawa, Olivier, Honigmann, Yang et al., A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins, Nat. Chem, doi:10.1038/nchem.1546
Meng, Abdullahi, Ferreira, Goonawardane, Saito et al., Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity, Nature, doi:10.1038/s41586-022-04474-x
Ou, Liu, Lei, Li, Mi et al., Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV, Nat. Commun, doi:10.1038/s41467-020-15562-9
Pelkmans, Helenius, Insider information: what viruses tell us about endocytosis, Curr. Opin. Cell Biol, doi:10.1016/S0955-0674(03)00081-4
Portales, Mustafa, Mccarthy, Cornejo, Couto et al., ACE2 internalization induced by a SARS-CoV-2 recombinant protein is modulated by angiotensin II type 1 and bradykinin 2 receptors, Life Sci, doi:10.1016/j.lfs.2021.120284
Prabhakara, Godbole, Sil, Jahnavi, Gulzar et al., Strategies to target SARS-CoV-2 entry and infection using dual mechanisms of inhibition by acidification inhibitors, PLoS Pathog, doi:10.1371/journal.ppat.1009706
Qi, Chi, Li, Qiao, Chen et al., A H-bond strategy to develop acid-resistant photoswitchable rhodamine spirolactams for super-resolution single-molecule localization microscopy, Chem. Sci, doi:10.1039/C9SC01284B
Qiao, Liu, Chen, Zhou, Yin et al., A naphthalimide-derived fluorogenic probe for SNAP-tag with a fast record labeling rate, Dyes Pigm, doi:10.1016/j.dyepig.2017.08.032
Renard, Johannes, Morsomme, Increasing diversity of biological membrane fission mechanisms, Trends Cell Biol, doi:10.1016/j.tcb.2017.12.001
Rink, Ghigo, Kalaidzidis, Zerial, Rab conversion as a mechanism of progression from early to late endosomes, Cell, doi:10.1016/j.cell.2005.06.043
Saffi, Botelho, Lysosome fission: planning for an exit, Trends Cell Biol, doi:10.1016/j.tcb.2019.05.003
Shang, Wan, Luo, Ye, Geng et al., Cell entry mechanisms of SARS-CoV-2, Proc. Natl. Acad. Sci. USA, doi:10.1073/pnas.2003138117
Shang, Ye, Shi, Wan, Luo et al., Structural basis of receptor recognition by SARS-CoV-2, Nature, doi:10.1038/s41586-020-2179-y
Trivedi, Bartlett, Pulinilkunnil, Lysosomal biology and function: modern view of cellular debris bin, Cells, doi:10.3390/cells9051131
Verdecchia, Cavallini, Spanevello, Angeli, The pivotal link between ACE2 deficiency and SARS-CoV-2 infection, Eur. J. Intern. Med, doi:10.1016/j.ejim.2020.04.037
Vickers, Hales, Kaushik, Dick, Gavin et al., Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase, J. Biol. Chem, doi:10.1074/jbc.M200581200
Wang, Frei, Salim, Johnsson, Small-molecule fluorescent probes for live-cell super-resolution microscopy, J. Am. Chem. Soc, doi:10.1021/jacs.8b11134
Wang, Qiu, Hou, Deng, Xu et al., AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells, Cell Res, doi:10.1038/s41422-020-00460-y
Wang, Zhang, Wu, Niu, Song et al., Structural and functional basis of SARS-CoV-2 entry by using human ACE2, Cell, doi:10.1016/j.cell.2020.03.045
Wrapp, Wang, Corbett, Goldsmith, Hsieh et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science, doi:10.1126/science.abb2507
Yan, Gao, Comparison of the binding characteristics of SARS-CoV and SARS-CoV-2 RBDs to ACE2 at different temperatures by MD simulations, Brief. Bioinform, doi:10.1093/bib/bbab044
Yan, Zhang, Li, Xia, Guo et al., Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2, Science, doi:10.1126/science.abb2762
Yang, Shen, Targeting the endocytic pathway and autophagy process as a novel therapeutic strategy in COVID-19, Int. J. Biol. Sci, doi:10.7150/ijbs.45498
Yeung, Teng, Jia, Zhang, Huang et al., Soluble ACE2-mediated cell entry of SARS-CoV-2 via interaction with proteins related to the renin-angiotensin system, Cell, doi:10.1016/j.cell.2021.02.053
Yuan, Pavel, Wang, Kwachukwu, Mediouni et al., Hydroxychloroquine blocks SARS-CoV-2 entry into the endocytic pathway in mammalian cell culture, Commun. Biol, doi:10.1038/s42003-022-03841-8
Zhang, Wada, Hida, Tsuchiyama, Hiragushi et al., Collectrin, a collecting duct-specific transmembrane glycoprotein, is a novel homolog of ACE2 and is developmentally regulated in embryonic kidneys, J. Biol. Chem, doi:10.1074/jbc.M006723200
Zhou, Fang, Qiao, Jiang, Zhang et al., Quantitative assessment of rhodamine spectra, Chin. Chem. Lett, doi:10.1016/j.cclet.2021.02.003
{ 'DOI': '10.1016/j.chembiol.2023.02.001', 'ISSN': ['2451-9456'], 'URL': 'http://dx.doi.org/10.1016/j.chembiol.2023.02.001', 'alternative-id': ['S2451945623000326'], 'assertion': [ {'label': 'This article is maintained by', 'name': 'publisher', 'value': 'Elsevier'}, { 'label': 'Article Title', 'name': 'articletitle', 'value': 'SIM imaging resolves endocytosis of SARS-CoV-2 spike RBD in living cells'}, {'label': 'Journal Title', 'name': 'journaltitle', 'value': 'Cell Chemical Biology'}, { 'label': 'CrossRef DOI link to publisher maintained version', 'name': 'articlelink', 'value': 'https://doi.org/10.1016/j.chembiol.2023.02.001'}, {'label': 'Content Type', 'name': 'content_type', 'value': 'article'}, {'label': 'Copyright', 'name': 'copyright', 'value': '© 2023 Elsevier Ltd.'}], 'author': [ {'affiliation': [], 'family': 'Miao', 'given': 'Lu', 'sequence': 'first'}, {'affiliation': [], 'family': 'Yan', 'given': 'Chunyu', 'sequence': 'additional'}, {'affiliation': [], 'family': 'Chen', 'given': 'Yingzhu', 'sequence': 'additional'}, {'affiliation': [], 'family': 'Zhou', 'given': 'Wei', 'sequence': 'additional'}, {'affiliation': [], 'family': 'Zhou', 'given': 'Xuelian', 'sequence': 'additional'}, {'affiliation': [], 'family': 'Qiao', 'given': 'Qinglong', 'sequence': 'additional'}, {'affiliation': [], 'family': 'Xu', 'given': 'Zhaochao', 'sequence': 'additional'}], 'container-title': 'Cell Chemical Biology', 'container-title-short': 'Cell Chemical Biology', 'content-domain': { 'crossmark-restriction': True, 'domain': ['cell.com', 'elsevier.com', 'sciencedirect.com']}, 'created': {'date-parts': [[2023, 3, 7]], 'date-time': '2023-03-07T18:14:27Z', 'timestamp': 1678212867000}, 'deposited': { 'date-parts': [[2024, 3, 17]], 'date-time': '2024-03-17T09:07:44Z', 'timestamp': 1710666464000}, 'funder': [ { 'DOI': '10.13039/501100001809', 'award': ['22078314', '22225806', '22278394'], 'doi-asserted-by': 'publisher', 'name': 'National Natural Science Foundation of China'}, { 'DOI': '10.13039/501100002979', 'award': ['DICPI202142', 'DICPI202227'], 'doi-asserted-by': 'publisher', 'name': 'Dalian Institute of Chemical Physics'}], 'indexed': {'date-parts': [[2024, 3, 25]], 'date-time': '2024-03-25T01:20:30Z', 'timestamp': 1711329630497}, 'is-referenced-by-count': 8, 'issue': '3', 'issued': {'date-parts': [[2023, 3]]}, 'journal-issue': {'issue': '3', 'published-print': {'date-parts': [[2023, 3]]}}, 'language': 'en', 'license': [ { 'URL': 'https://www.elsevier.com/tdm/userlicense/1.0/', 'content-version': 'tdm', 'delay-in-days': 0, 'start': { 'date-parts': [[2023, 3, 1]], 'date-time': '2023-03-01T00:00:00Z', 'timestamp': 1677628800000}}, { 'URL': 'http://www.elsevier.com/open-access/userlicense/1.0/', 'content-version': 'vor', 'delay-in-days': 381, 'start': { 'date-parts': [[2024, 3, 16]], 'date-time': '2024-03-16T00:00:00Z', 'timestamp': 1710547200000}}, { 'URL': 'https://doi.org/10.15223/policy-017', 'content-version': 'stm-asf', 'delay-in-days': 0, 'start': { 'date-parts': [[2023, 3, 1]], 'date-time': '2023-03-01T00:00:00Z', 'timestamp': 1677628800000}}, { 'URL': 'https://doi.org/10.15223/policy-037', 'content-version': 'stm-asf', 'delay-in-days': 0, 'start': { 'date-parts': [[2023, 3, 1]], 'date-time': '2023-03-01T00:00:00Z', 'timestamp': 1677628800000}}, { 'URL': 'https://doi.org/10.15223/policy-012', 'content-version': 'stm-asf', 'delay-in-days': 0, 'start': { 'date-parts': [[2023, 3, 1]], 'date-time': '2023-03-01T00:00:00Z', 'timestamp': 1677628800000}}, { 'URL': 'https://doi.org/10.15223/policy-029', 'content-version': 'stm-asf', 'delay-in-days': 0, 'start': { 'date-parts': [[2023, 3, 1]], 'date-time': '2023-03-01T00:00:00Z', 'timestamp': 1677628800000}}, { 'URL': 'https://doi.org/10.15223/policy-004', 'content-version': 'stm-asf', 'delay-in-days': 0, 'start': { 'date-parts': [[2023, 3, 1]], 'date-time': '2023-03-01T00:00:00Z', 'timestamp': 1677628800000}}], 'link': [ { 'URL': 'https://api.elsevier.com/content/article/PII:S2451945623000326?httpAccept=text/xml', 'content-type': 'text/xml', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://api.elsevier.com/content/article/PII:S2451945623000326?httpAccept=text/plain', 'content-type': 'text/plain', 'content-version': 'vor', 'intended-application': 'text-mining'}], 'member': '78', 'original-title': [], 'page': '248-260.e4', 'prefix': '10.1016', 'published': {'date-parts': [[2023, 3]]}, 'published-print': {'date-parts': [[2023, 3]]}, 'publisher': 'Elsevier BV', 'reference': [ { 'DOI': '10.1016/j.cell.2021.02.053', 'article-title': 'Soluble ACE2-mediated cell entry of SARS-CoV-2 via interaction with ' 'proteins related to the renin-angiotensin system', 'author': 'Yeung', 'doi-asserted-by': 'crossref', 'first-page': '2212', 'journal-title': 'Cell', 'key': '10.1016/j.chembiol.2023.02.001_bib1', 'volume': '184', 'year': '2021'}, { 'DOI': '10.1038/s41580-021-00418-x', 'article-title': 'Mechanisms of SARS-CoV-2 entry into cells', 'author': 'Jackson', 'doi-asserted-by': 'crossref', 'first-page': '3', 'journal-title': 'Nat. Rev. Mol. Cell Biol.', 'key': '10.1016/j.chembiol.2023.02.001_bib2', 'volume': '23', 'year': '2022'}, { 'DOI': '10.1038/s41586-020-2179-y', 'article-title': 'Structural basis of receptor recognition by SARS-CoV-2', 'author': 'Shang', 'doi-asserted-by': 'crossref', 'first-page': '221', 'journal-title': 'Nature', 'key': '10.1016/j.chembiol.2023.02.001_bib3', 'volume': '581', 'year': '2020'}, { 'DOI': '10.1038/s41586-020-2180-5', 'article-title': 'Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ' 'ACE2 receptor', 'author': 'Lan', 'doi-asserted-by': 'crossref', 'first-page': '215', 'journal-title': 'Nature', 'key': '10.1016/j.chembiol.2023.02.001_bib4', 'volume': '581', 'year': '2020'}, { 'DOI': '10.1016/j.cell.2020.03.045', 'article-title': 'Structural and functional basis of SARS-CoV-2 entry by using human ACE2', 'author': 'Wang', 'doi-asserted-by': 'crossref', 'first-page': '894', 'journal-title': 'Cell', 'key': '10.1016/j.chembiol.2023.02.001_bib5', 'volume': '181', 'year': '2020'}, { 'DOI': '10.1126/science.abb2762', 'article-title': 'Structural basis for the recognition of SARS-CoV-2 by full-length human ' 'ACE2', 'author': 'Yan', 'doi-asserted-by': 'crossref', 'first-page': '1444', 'journal-title': 'Science', 'key': '10.1016/j.chembiol.2023.02.001_bib6', 'volume': '367', 'year': '2020'}, { 'DOI': '10.1126/science.abb2507', 'article-title': 'Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation', 'author': 'Wrapp', 'doi-asserted-by': 'crossref', 'first-page': '1260', 'journal-title': 'Science', 'key': '10.1016/j.chembiol.2023.02.001_bib7', 'volume': '367', 'year': '2020'}, { 'DOI': '10.1083/jcb.201108131', 'article-title': 'The cell biology of receptor-mediated virus entry', 'author': 'Grove', 'doi-asserted-by': 'crossref', 'first-page': '1071', 'journal-title': 'J.\xa0Cell Biol.', 'key': '10.1016/j.chembiol.2023.02.001_bib8', 'volume': '195', 'year': '2011'}, { 'DOI': '10.1038/s41586-022-04474-x', 'article-title': 'Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and ' 'fusogenicity', 'author': 'Meng', 'doi-asserted-by': 'crossref', 'first-page': '706', 'journal-title': 'Nature', 'key': '10.1016/j.chembiol.2023.02.001_bib9', 'volume': '603', 'year': '2022'}, { 'DOI': '10.1073/pnas.2003138117', 'article-title': 'Cell entry mechanisms of SARS-CoV-2', 'author': 'Shang', 'doi-asserted-by': 'crossref', 'first-page': '11727', 'journal-title': 'Proc. Natl. Acad. Sci. USA', 'key': '10.1016/j.chembiol.2023.02.001_bib10', 'volume': '117', 'year': '2020'}, { 'DOI': '10.1371/journal.ppat.1009706', 'article-title': 'Strategies to target SARS-CoV-2 entry and infection using dual ' 'mechanisms of inhibition by acidification inhibitors', 'author': 'Prabhakara', 'doi-asserted-by': 'crossref', 'first-page': 'e1009706', 'journal-title': 'PLoS Pathog.', 'key': '10.1016/j.chembiol.2023.02.001_bib11', 'volume': '17', 'year': '2021'}, { 'DOI': '10.1038/s41467-020-15562-9', 'article-title': 'Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and ' 'its immune cross-reactivity with SARS-CoV', 'author': 'Ou', 'doi-asserted-by': 'crossref', 'first-page': '1620', 'journal-title': 'Nat. Commun.', 'key': '10.1016/j.chembiol.2023.02.001_bib12', 'volume': '11', 'year': '2020'}, { 'DOI': '10.1016/j.jbc.2021.100306', 'article-title': 'SARS-CoV-2 infects cells after viral entry via clathrin-mediated ' 'endocytosis', 'author': 'Bayati', 'doi-asserted-by': 'crossref', 'first-page': '100306', 'journal-title': 'J.\xa0Biol. Chem.', 'key': '10.1016/j.chembiol.2023.02.001_bib13', 'volume': '296', 'year': '2021'}, { 'DOI': '10.1016/j.cell.2020.09.033', 'article-title': 'SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2', 'author': 'Clausen', 'doi-asserted-by': 'crossref', 'first-page': '1043', 'journal-title': 'Cell', 'key': '10.1016/j.chembiol.2023.02.001_bib14', 'volume': '183', 'year': '2020'}, { 'DOI': '10.3390/cells10071814', 'article-title': 'SARS-CoV-2 cellular entry is independent of the ACE2 cytoplasmic domain ' 'signaling', 'author': 'Karthika', 'doi-asserted-by': 'crossref', 'first-page': '1814', 'journal-title': 'Cells', 'key': '10.1016/j.chembiol.2023.02.001_bib15', 'volume': '10', 'year': '2021'}, { 'DOI': '10.1093/bib/bbab044', 'article-title': 'Comparison of the binding characteristics of SARS-CoV and SARS-CoV-2 ' 'RBDs to ACE2 at different temperatures by MD simulations', 'author': 'Yan', 'doi-asserted-by': 'crossref', 'first-page': '1122', 'journal-title': 'Brief. Bioinform.', 'key': '10.1016/j.chembiol.2023.02.001_bib16', 'volume': '22', 'year': '2021'}, { 'DOI': '10.1021/acs.chemrev.9b00692', 'article-title': 'Single-virus tracking: from imaging methodologies to virological ' 'applications', 'author': 'Liu', 'doi-asserted-by': 'crossref', 'first-page': '1936', 'journal-title': 'Chem. Rev.', 'key': '10.1016/j.chembiol.2023.02.001_bib17', 'volume': '120', 'year': '2020'}, { 'DOI': '10.1021/acs.chemrev.7b00218', 'article-title': 'Super-resolution structured illumination microscopy', 'author': 'Heintzmann', 'doi-asserted-by': 'crossref', 'first-page': '13890', 'journal-title': 'Chem. Rev.', 'key': '10.1016/j.chembiol.2023.02.001_bib18', 'volume': '117', 'year': '2017'}, { 'DOI': '10.1038/nbt.4115', 'article-title': 'Fast, long-term, super-resolution imaging with Hessian structured ' 'illumination microscopy', 'author': 'Huang', 'doi-asserted-by': 'crossref', 'first-page': '451', 'journal-title': 'Nat. Biotechnol.', 'key': '10.1016/j.chembiol.2023.02.001_bib19', 'volume': '36', 'year': '2018'}, { 'DOI': '10.1016/j.cell.2018.09.057', 'article-title': 'Visualizing intracellular organelle and cytoskeletal interactions at ' 'nanoscale resolution on millisecond timescales', 'author': 'Guo', 'doi-asserted-by': 'crossref', 'first-page': '1430', 'journal-title': 'Cell', 'key': '10.1016/j.chembiol.2023.02.001_bib20', 'volume': '175', 'year': '2018'}, { 'DOI': '10.1038/s41467-017-01503-6', 'article-title': 'Cell-permeable organic fluorescent probes for live-cell long-term ' 'super-resolution imaging reveal lysosome-mitochondrion interactions', 'author': 'Han', 'doi-asserted-by': 'crossref', 'first-page': '1307', 'journal-title': 'Nat. Commun.', 'key': '10.1016/j.chembiol.2023.02.001_bib21', 'volume': '8', 'year': '2017'}, { 'DOI': '10.1038/s41467-020-20309-7', 'article-title': 'Simultaneous Zn2+ tracking in multiple organelles using ' 'super-resolution morphology-correlated organelle identification in ' 'living cells', 'author': 'Fang', 'doi-asserted-by': 'crossref', 'first-page': '109', 'journal-title': 'Nat. Commun.', 'key': '10.1016/j.chembiol.2023.02.001_bib22', 'volume': '12', 'year': '2021'}, { 'DOI': '10.1002/anie.202111052', 'article-title': 'Stable super-resolution imaging of lipid droplet dynamics through a ' 'buffer strategy with a hydrogen-bond sensitive fluorogenic probe', 'author': 'Chen', 'doi-asserted-by': 'crossref', 'first-page': '25104', 'journal-title': 'Angew. Chem. Int. Ed. Engl.', 'key': '10.1016/j.chembiol.2023.02.001_bib23', 'volume': '60', 'year': '2021'}, { 'DOI': '10.1016/j.cclet.2022.03.120', 'article-title': 'BODIPY 493 acts as a bright buffering fluorogenic probe for ' 'super-resolution imaging of lipid droplet dynamics', 'author': 'Chen', 'doi-asserted-by': 'crossref', 'first-page': '5042', 'journal-title': 'Chin. Chem. Lett.', 'key': '10.1016/j.chembiol.2023.02.001_bib24', 'volume': '33', 'year': '2022'}, { 'DOI': '10.1021/jacs.8b11134', 'article-title': 'Small-molecule fluorescent probes for live-cell super-resolution ' 'microscopy', 'author': 'Wang', 'doi-asserted-by': 'crossref', 'first-page': '2770', 'journal-title': 'J.\xa0Am. Chem. Soc.', 'key': '10.1016/j.chembiol.2023.02.001_bib25', 'volume': '141', 'year': '2019'}, { 'DOI': '10.1016/j.cclet.2021.02.003', 'article-title': 'Quantitative assessment of rhodamine spectra', 'author': 'Zhou', 'doi-asserted-by': 'crossref', 'first-page': '943', 'journal-title': 'Chin. Chem. Lett.', 'key': '10.1016/j.chembiol.2023.02.001_bib26', 'volume': '32', 'year': '2021'}, { 'DOI': '10.1002/anie.202010169', 'article-title': 'Descriptor ΔG(C-O) enables the quantitative design of spontaneously ' 'blinking rhodamines for live-cell super-resolution imaging', 'author': 'Chi', 'doi-asserted-by': 'crossref', 'first-page': '20215', 'journal-title': 'Angew. Chem. Int. Ed. Engl.', 'key': '10.1016/j.chembiol.2023.02.001_bib27', 'volume': '59', 'year': '2020'}, { 'DOI': '10.1039/C9SC01284B', 'article-title': 'A H-bond strategy to develop acid-resistant photoswitchable rhodamine ' 'spirolactams for super-resolution single-molecule localization ' 'microscopy', 'author': 'Qi', 'doi-asserted-by': 'crossref', 'first-page': '4914', 'journal-title': 'Chem. Sci.', 'key': '10.1016/j.chembiol.2023.02.001_bib28', 'volume': '10', 'year': '2019'}, { 'DOI': '10.1016/j.chembiol.2008.01.007', 'article-title': 'An engineered protein tag for multiprotein labeling in living cells', 'author': 'Gautier', 'doi-asserted-by': 'crossref', 'first-page': '128', 'journal-title': 'Chem. Biol.', 'key': '10.1016/j.chembiol.2023.02.001_bib29', 'volume': '15', 'year': '2008'}, { 'DOI': '10.1021/cb800025k', 'article-title': 'HaloTag: a novel protein labeling technology for cell imaging and ' 'protein analysis', 'author': 'Los', 'doi-asserted-by': 'crossref', 'first-page': '373', 'journal-title': 'ACS Chem. Biol.', 'key': '10.1016/j.chembiol.2023.02.001_bib30', 'volume': '3', 'year': '2008'}, { 'DOI': '10.1039/C7CC01483J', 'article-title': 'A wash-free SNAP-tag fluorogenic probe based on the additive effects of ' 'quencher release and environmental sensitivity', 'author': 'Leng', 'doi-asserted-by': 'crossref', 'first-page': '6448', 'journal-title': 'Chem. Commun.', 'key': '10.1016/j.chembiol.2023.02.001_bib31', 'volume': '53', 'year': '2017'}, { 'DOI': '10.1016/j.dyepig.2017.08.032', 'article-title': 'A naphthalimide-derived fluorogenic probe for SNAP-tag with a fast ' 'record labeling rate', 'author': 'Qiao', 'doi-asserted-by': 'crossref', 'first-page': '327', 'journal-title': 'Dyes Pigm.', 'key': '10.1016/j.chembiol.2023.02.001_bib32', 'volume': '147', 'year': '2017'}, { 'DOI': '10.1021/acsnano.5b06438', 'article-title': 'Simultaneous visualization of parental and progeny viruses by a ' 'capsid-specific HaloTag labeling strategy', 'author': 'Liu', 'doi-asserted-by': 'crossref', 'first-page': '1147', 'journal-title': 'ACS Nano', 'key': '10.1016/j.chembiol.2023.02.001_bib33', 'volume': '10', 'year': '2016'}, { 'DOI': '10.1016/j.bios.2020.112886', 'article-title': 'An assembly-regulated SNAP-tag fluorogenic probe for long-term ' 'super-resolution imaging of mitochondrial dynamics', 'author': 'Liu', 'doi-asserted-by': 'crossref', 'first-page': '112886', 'journal-title': 'Biosens. Bioelectron.', 'key': '10.1016/j.chembiol.2023.02.001_bib34', 'volume': '176', 'year': '2021'}, { 'DOI': '10.1016/j.cclet.2022.03.121', 'article-title': 'A TICS-fluorophore based probe for dual-color GSH imaging', 'author': 'Liu', 'doi-asserted-by': 'crossref', 'first-page': '4943', 'journal-title': 'Chin. Chem. Lett.', 'key': '10.1016/j.chembiol.2023.02.001_bib35', 'volume': '33', 'year': '2022'}, { 'DOI': '10.1074/jbc.M006723200', 'article-title': 'Collectrin, a collecting duct-specific transmembrane glycoprotein, is a ' 'novel homolog of ACE2 and is developmentally regulated in embryonic ' 'kidneys', 'author': 'Zhang', 'doi-asserted-by': 'crossref', 'first-page': '17132', 'journal-title': 'J.\xa0Biol. Chem.', 'key': '10.1016/j.chembiol.2023.02.001_bib36', 'volume': '276', 'year': '2001'}, { 'DOI': '10.1038/nrm.2017.132', 'article-title': 'Mechanisms of clathrin-mediated endocytosis', 'author': 'Kaksonen', 'doi-asserted-by': 'crossref', 'first-page': '313', 'journal-title': 'Nat. Rev. Mol. Cell Biol.', 'key': '10.1016/j.chembiol.2023.02.001_bib37', 'volume': '19', 'year': '2018'}, { 'DOI': '10.1038/nchem.1546', 'article-title': 'A near-infrared fluorophore for live-cell super-resolution microscopy ' 'of cellular proteins', 'author': 'Lukinavičius', 'doi-asserted-by': 'crossref', 'first-page': '132', 'journal-title': 'Nat. Chem.', 'key': '10.1016/j.chembiol.2023.02.001_bib38', 'volume': '5', 'year': '2013'}, { 'DOI': '10.1074/jbc.M200581200', 'article-title': 'Hydrolysis of biological\xa0peptides by human angiotensin-converting ' 'enzyme-related carboxypeptidase', 'author': 'Vickers', 'doi-asserted-by': 'crossref', 'first-page': '14838', 'journal-title': 'J.\xa0Biol. Chem.', 'key': '10.1016/j.chembiol.2023.02.001_bib39', 'volume': '277', 'year': '2002'}, { 'DOI': '10.7150/ijbs.45498', 'article-title': 'Targeting the endocytic pathway and autophagy process as a novel ' 'therapeutic strategy in COVID-19', 'author': 'Yang', 'doi-asserted-by': 'crossref', 'first-page': '1724', 'journal-title': 'Int. J. Biol. Sci.', 'key': '10.1016/j.chembiol.2023.02.001_bib40', 'volume': '16', 'year': '2020'}, { 'DOI': '10.1016/j.cell.2005.06.043', 'article-title': 'Rab conversion as a mechanism of progression from early to late ' 'endosomes', 'author': 'Rink', 'doi-asserted-by': 'crossref', 'first-page': '735', 'journal-title': 'Cell', 'key': '10.1016/j.chembiol.2023.02.001_bib41', 'volume': '122', 'year': '2005'}, { 'DOI': '10.1016/S0955-0674(03)00081-4', 'article-title': 'Insider information: what viruses tell us about endocytosis', 'author': 'Pelkmans', 'doi-asserted-by': 'crossref', 'first-page': '414', 'journal-title': 'Curr. Opin. Cell Biol.', 'key': '10.1016/j.chembiol.2023.02.001_bib42', 'volume': '15', 'year': '2003'}, { 'DOI': '10.2174/138161207780618911', 'article-title': 'The two fACEs of the tissue renin-angiotensin systems: implication in ' 'cardiovascular diseases', 'author': 'Lazartigues', 'doi-asserted-by': 'crossref', 'first-page': '1231', 'journal-title': 'Curr. Pharm. Des.', 'key': '10.1016/j.chembiol.2023.02.001_bib43', 'volume': '13', 'year': '2007'}, { 'DOI': '10.1161/HYPERTENSIONAHA.114.03743', 'article-title': 'Angiotensin II mediates angiotensin converting enzyme type 2 ' 'internalization and degradation through an angiotensin ii type i ' 'receptor–dependent mechanism', 'author': 'Deshotels', 'doi-asserted-by': 'crossref', 'first-page': '1368', 'journal-title': 'Hypertension', 'key': '10.1016/j.chembiol.2023.02.001_bib44', 'volume': '64', 'year': '2014'}, { 'DOI': '10.1038/s41422-020-00460-y', 'article-title': 'AXL is a candidate receptor for SARS-CoV-2 that promotes infection of ' 'pulmonary and bronchial epithelial cells', 'author': 'Wang', 'doi-asserted-by': 'crossref', 'first-page': '126', 'journal-title': 'Cell Res.', 'key': '10.1016/j.chembiol.2023.02.001_bib45', 'volume': '31', 'year': '2021'}, { 'DOI': '10.1126/science.abd2985', 'article-title': 'Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity', 'author': 'Cantuti-Castelvetri', 'doi-asserted-by': 'crossref', 'first-page': '856', 'journal-title': 'Science', 'key': '10.1016/j.chembiol.2023.02.001_bib46', 'volume': '370', 'year': '2020'}, { 'DOI': '10.1038/s42003-022-03841-8', 'article-title': 'Hydroxychloroquine blocks SARS-CoV-2 entry into the endocytic pathway ' 'in mammalian cell culture', 'author': 'Yuan', 'doi-asserted-by': 'crossref', 'first-page': '958', 'journal-title': 'Commun. Biol.', 'key': '10.1016/j.chembiol.2023.02.001_bib47', 'volume': '5', 'year': '2022'}, { 'DOI': '10.1038/s41565-020-0674-9', 'article-title': 'Insights from nanomedicine into chloriquine efficacy against COVID-19', 'author': 'Hu', 'doi-asserted-by': 'crossref', 'first-page': '247', 'journal-title': 'Nat. Nanotechnol.', 'key': '10.1016/j.chembiol.2023.02.001_bib48', 'volume': '15', 'year': '2020'}, { 'DOI': '10.1016/S0168-8278(96)80146-2', 'article-title': 'Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPases, ' 'inhibits the receptor-mediated endocytosis of asialoglycoproteins in ' 'isolated rat hepatocytes', 'author': 'Harada', 'doi-asserted-by': 'crossref', 'first-page': '594', 'journal-title': 'J.\xa0Hepatol.', 'key': '10.1016/j.chembiol.2023.02.001_bib49', 'volume': '24', 'year': '1996'}, { 'DOI': '10.3390/cells9051131', 'article-title': 'Lysosomal biology and function: modern view of cellular debris bin', 'author': 'Trivedi', 'doi-asserted-by': 'crossref', 'first-page': '1131', 'journal-title': 'Cells', 'key': '10.1016/j.chembiol.2023.02.001_bib50', 'volume': '9', 'year': '2020'}, { 'DOI': '10.1016/j.tcb.2019.05.003', 'article-title': 'Lysosome fission: planning for an exit', 'author': 'Saffi', 'doi-asserted-by': 'crossref', 'first-page': '635', 'journal-title': 'Trends Cell Biol.', 'key': '10.1016/j.chembiol.2023.02.001_bib51', 'volume': '29', 'year': '2019'}, { 'DOI': '10.1016/j.tcb.2017.12.001', 'article-title': 'Increasing diversity of biological membrane fission mechanisms', 'author': 'Renard', 'doi-asserted-by': 'crossref', 'first-page': '274', 'journal-title': 'Trends Cell Biol.', 'key': '10.1016/j.chembiol.2023.02.001_bib52', 'volume': '28', 'year': '2018'}, { 'DOI': '10.1016/j.cub.2005.01.049', 'article-title': 'Endocytic delivery to lysosomes mediated by concurrent fusion and ' 'kissing events in living cells', 'author': 'Bright', 'doi-asserted-by': 'crossref', 'first-page': '360', 'journal-title': 'Curr. Biol.', 'key': '10.1016/j.chembiol.2023.02.001_bib53', 'volume': '15', 'year': '2005'}, { 'DOI': '10.1016/j.cell.2020.10.039', 'article-title': 'Beta-coronaviruses use lysosomes for egress instead of the biosynthetic ' 'secretory pathway', 'author': 'Ghosh', 'doi-asserted-by': 'crossref', 'first-page': '1520', 'journal-title': 'Cell', 'key': '10.1016/j.chembiol.2023.02.001_bib54', 'volume': '183', 'year': '2020'}, { 'DOI': '10.1097/HJH.0000000000002859', 'article-title': 'SARS-CoV-2 infection and ACE2 inhibition', 'author': 'Angeli', 'doi-asserted-by': 'crossref', 'first-page': '1555', 'journal-title': 'J.\xa0Hypertens.', 'key': '10.1016/j.chembiol.2023.02.001_bib55', 'volume': '39', 'year': '2021'}, { 'DOI': '10.1016/j.ejim.2021.09.007', 'article-title': 'The pivotal link between ACE2 deficiency and SARS-CoV-2 infection: one ' 'year later', 'author': 'Angeli', 'doi-asserted-by': 'crossref', 'first-page': '28', 'journal-title': 'Eur. J. Intern. Med.', 'key': '10.1016/j.chembiol.2023.02.001_bib56', 'volume': '93', 'year': '2021'}, { 'DOI': '10.1016/j.ejim.2020.04.037', 'article-title': 'The pivotal link between ACE2 deficiency and SARS-CoV-2 infection', 'author': 'Verdecchia', 'doi-asserted-by': 'crossref', 'first-page': '14', 'journal-title': 'Eur. J. Intern. Med.', 'key': '10.1016/j.chembiol.2023.02.001_bib57', 'volume': '76', 'year': '2020'}, { 'DOI': '10.1016/j.lfs.2021.120284', 'article-title': 'ACE2 internalization induced by a SARS-CoV-2 recombinant protein is ' 'modulated by angiotensin II type 1 and bradykinin 2 receptors', 'author': 'Portales', 'doi-asserted-by': 'crossref', 'first-page': '120284', 'journal-title': 'Life Sci.', 'key': '10.1016/j.chembiol.2023.02.001_bib58', 'volume': '293', 'year': '2022'}, { 'DOI': '10.1038/s41598-022-18681-z', 'article-title': 'Optimized production and fluorescent labeling of SARS-CoV-2 virus-like ' 'particles', 'author': 'Gourdelier', 'doi-asserted-by': 'crossref', 'first-page': '14651', 'journal-title': 'Sci. Rep.', 'key': '10.1016/j.chembiol.2023.02.001_bib59', 'volume': '12', 'year': '2022'}], 'reference-count': 59, 'references-count': 59, 'relation': {}, 'resource': {'primary': {'URL': 'https://linkinghub.elsevier.com/retrieve/pii/S2451945623000326'}}, 'score': 1, 'short-title': [], 'source': 'Crossref', 'subject': [ 'Clinical Biochemistry', 'Drug Discovery', 'Pharmacology', 'Molecular Biology', 'Molecular Medicine', 'Biochemistry'], 'subtitle': [], 'title': 'SIM imaging resolves endocytosis of SARS-CoV-2 spike RBD in living cells', 'type': 'journal-article', 'update-policy': 'http://dx.doi.org/10.1016/elsevier_cm_policy', 'volume': '30'}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit