Alkalinization
Analgesics..
Antiandrogens..
Bromhexine
Budesonide
Cannabidiol
Colchicine
Conv. Plasma
Curcumin
Ensovibep
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Iota-carragee..
Ivermectin
Lactoferrin
Lifestyle..
Melatonin
Metformin
Molnupiravir
Monoclonals..
Nigella Sativa
Nitazoxanide
Nitric Oxide
Paxlovid
Peg.. Lambda
Povidone-Iod..
Quercetin
Remdesivir
Vitamins..
Zinc

Other
Feedback
Home
Home   COVID-19 treatment studies for Hydroxychloroquine  COVID-19 treatment studies for HCQ  C19 studies: HCQ  HCQ   Select treatmentSelect treatmentTreatmentsTreatments
Alkalinization Meta Lactoferrin Meta
Melatonin Meta
Bromhexine Meta Metformin Meta
Budesonide Meta Molnupiravir Meta
Cannabidiol Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta Nitric Oxide Meta
Ensovibep Meta Paxlovid Meta
Famotidine Meta Peg.. Lambda Meta
Favipiravir Meta Povidone-Iod.. Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta Remdesivir Meta
Iota-carragee.. Meta
Ivermectin Meta Zinc Meta

Other Treatments Global Adoption
All Studies   Meta Analysis   Recent:  

In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine

Keyaerts et al., Biochem. Biophys. Res. Comm., 323:1, 8 October 2004, doi:10.1016/j.bbrc.2004.08.085 (In Vitro)
Keyaerts et al., In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine, Biochem. Biophys. Res. Comm., 323:1, 8 October 2004, doi:10.1016/j.bbrc.2004.08.085 (In Vitro)
Aug 2004   Source   PDF  
  Twitter
  Facebook
Share
  All Studies   Meta
In Vitro study for SARS-CoV-1. IC50 of CQ for antiviral activity (8.8) is significantly lower than cytostatic activity CC50 (261.3), selectivity index of 30. IC50 for inhibition of SARS-CoV in vitro approximates the plasma concentrations of CQ reached during treatment of acute malaria. CQ may be considered for immediate use in the prevention and treatment of SARS-CoV infections.
14 In Vitro studies support the efficacy of HCQ [Andreani, Clementi, Dang, Delandre, Faísca, Hoffmann, Liu, Ou, Purwati, Sheaff, Wang, Wang (B), Yao, Yuan].
Keyaerts et al., 28 Aug 2004, peer-reviewed, 5 authors.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
All Studies   Meta Analysis   Submit Updates or Corrections
This PaperHCQAll
In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine
Els Keyaerts, Leen Vijgen, Piet Maes, Johan Neyts, Marc Van Ranst
Biochemical and Biophysical Research Communications, doi:10.1016/j.bbrc.2004.08.085
We report on chloroquine, a 4-amino-quinoline, as an effective inhibitor of the replication of the severe acute respiratory syndrome coronavirus (SARS-CoV) in vitro. Chloroquine is a clinically approved drug effective against malaria. We tested chloroquine phosphate for its antiviral potential against SARS-CoV-induced cytopathicity in Vero E6 cell culture. Results indicate that the IC 50 of chloroquine for antiviral activity (8.8 ± 1.2 lM) was significantly lower than its cytostatic activity; CC 50 (261.3 ± 14.5 lM), yielding a selectivity index of 30. The IC 50 of chloroquine for inhibition of SARS-CoV in vitro approximates the plasma concentrations of chloroquine reached during treatment of acute malaria. Addition of chloroquine to infected cultures could be delayed for up to 5 h postinfection, without an important drop in antiviral activity. Chloroquine, an old antimalarial drug, may be considered for immediate use in the prevention and treatment of SARS-CoV infections.
References
Blau, Holmes, Human Coronavirus HCoV-229E enters susceptible cells via the endocytic pathway
Chan, Lai, Chu, Tsui, Tam et al., Treatment of severe acute respiratory syndrome with lopinavir/ ritonavir: a multicentre retrospective matched cohort study, Hong Kong Med. J
Charmot, Coulaud, Treatment of Plasmodium falciparum malaria in Africa (except cerebral malaria), Med. Trop
Chu, Cheng, Hung, Wong, Chan et al., HKU/UCH SARS study group, Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings, Thorax
Cinatl, Michaelis, Scholz, Doerr, Role of interferons in the treatment of severe acute respiratory syndrome, Expert, Opin. Biol. Ther
Cinatl, Morgenstern, Bauer, Chandra, Rabenau et al., Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus, Lancet
Drosten, Gunther, Preiser, Van Der Werf, Brodt et al., Identification of a novel coronavirus in patients with severe acute respiratory syndrome, N. Engl. J. Med
Fronhoffs, Totzke, Stier, Wernert, Rothe et al., A method for the rapid construction of cRNA standard curves in quantitative real-time reverse transcription polymerase chain reaction, Mol. Cell. Probes
Goodwin, Holt, Downes, Marshall, Microculture tetrazolium assays: a comparison between two new tetrazolium salts, XTT and MTS, J. Immunol. Methods
Keyaerts, Vijgen, Chen, Maes, Hedenstierna et al., Inhibition of SARS-coronavirus infection in vitro by S-nitroso-N-acetylpenicillamine, a nitric oxide donor compound, Int. J. Infect. Dis
Kouroumalis, Koskinas, Treatment of chronic active hepatitis B (CAH B) with chloroquine: a preliminary report, Ann. Acad. Med. Singapore
Ksiazek, Erdman, Goldsmith, Zaki, Peret et al., SARS Working Group, A novel coronavirus associated with severe acute respiratory syndrome, N. Engl. J. Med
Kuiken, Fouchier, Schutten, Rimmelzwaan, Van Amerongen et al., Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome, Lancet
Marra, Jones, Astell, Holt, Brooks-Wilson et al., The genome sequence of the SARS-associated coronavirus, Science
Ng, Tan, See, Ooi, Ling, Proliferative growth of SARS coronavirus in Vero E6 cells, J. Gen. Virol
Pardridge, Yang, Diagne, Chloroquine inhibits HIV-1 replication in human peripheral blood lymphocytes, Immunol. Lett
Pauwels, Balzarini, Baba, Snoeck, Schols et al., Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds, J. Virol. Methods
Peiris, Lai, Poon, Guan, Yam et al., Coronavirus as a possible cause of severe acute respiratory syndrome, Lancet
Rota, Oberste, Monroe, Nix, Campagnoli et al., Characterization of a novel coronavirus associated with severe acute respiratory syndrome, Science
Savarino, Boelaert, Cassone, Majori, Cauda, Effects of chloroquine on viral infections: an old drug against todayÕs diseases?, Lancet Infect. Dis
Savarino, Gennero, Sperber, Boelaert, The anti-HIV-1 activity of chloroquine, J. Clin. Virol
Singh, Sidhu, Friedman, Maheshwari, Mechanism of enhancement of the antiviral action of interferon against herpes simplex virus-1 by chloroquine, J. Interferon Cytokine Res
Tsai, Nara, Kung, Oroszlan, Inhibition of human immunodeficiency virus infectivity by chloroquine, AIDS Res. Hum. Retroviruses
Wollheim, Hanson, Laurell, Chloroquine treatment in rheumatoid arthritis. Correlation of clinical response to plasma protein changes and chloroquine levels, Scand. J. Rheumatol
Wu, Jan, Chen, Hsieh, Hwang et al., Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide, Antimicrob. Agents Chemother
Yamamoto, Yang, Yoshinaka, Amari, Nakano et al., HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus, Biochem. Biophys. Res. Commun
Zhaori, Antiviral treatment of SARS: can we draw any conclusions?, CMAJ
Loading..
Please send us corrections, updates, or comments. Vaccines and treatments are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit