Conv. Plasma
Nigella Sativa

All HCQ studies
Meta analysis
study COVID-19 treatment researchHCQHCQ (more..)
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis    Recent:   

Inhibitory capacity of Chloroquine against SARS-COV-2 by effective binding with Angiotensin converting enzyme-2 receptor: An insight from molecular docking and MD-simulation studies

Baildya et al., Journal of Molecular Structure, doi:10.1016/j.molstruc.2021.129891
Jan 2021  
  Source   PDF   All Studies   Meta AnalysisMeta
HCQ for COVID-19
1st treatment shown to reduce risk in March 2020
*, now known with p < 0.00000000001 from 421 studies, recognized in 42 countries.
No treatment is 100% effective. Protocols combine complementary and synergistic treatments. * >10% efficacy in meta analysis with ≥3 clinical studies.
3,800+ studies for 60+ treatments.
Molecular docking study of 16 drugs showing CQ had the highest binding affinity with ACE2, and molecular dynamics study of the docked CQ-ACE2 structure. Authors conclude that CQ binds reasonably strongly with ACE2 and the stable ACE2-CQ may prevent further binding of ACE2 with the SARS-CoV-2 spike protein.
Baildya et al., 7 Jan 2021, peer-reviewed, 3 authors.
In Silico studies are an important part of preclinical research, however results may be very different in vivo.
This PaperHCQAll
Inhibitory capacity of chloroquine against SARS-COV-2 by effective binding with angiotensin converting enzyme-2 receptor: An insight from molecular docking and MD-simulation studies
Nabajyoti Baildya, Narendra Nath Ghosh, Asoke P Chattopadhyay
Journal of Molecular Structure, doi:10.1016/j.molstruc.2021.129891
The main binding site for SARS-COV-2 spike protein in human body is human Angiotensin converting enzyme 2 (ACE2) protein receptor. Herein we present the effect of chloroquine (CLQ) on human ACE2 receptor. Molecular docking studies showed that chloroquine have a docking score is quite high compare to other well known drugs. Furthermore, molecular dynamics (MD) studies with CLQ docked ACE2 results in large fluctuations on RMSD up to 2.3 ns, indicating conformational and rotational changes due to the presence of drug molecule in the ACE2 moiety. Analysis of results showed that CLQ can effect the conformation of human ACE2 receptor. We believed that this work will help researchers to understand better the effect of CLQ on ACE2.
Abraham, Gready, Optimization of parameters for molecular dynamics simulation using smooth particle-mesh Ewald in GROMACS 4.5, J Comput Chem
Baildya, Ghosh, Chattopadhyay, Inhibitory activity of hydroxychloroquine on COVID-19 main protease: an insight from MD-simulation studies, J Mol Struct
Berendsen, Van Der Spoel, Van Drunen, GROMACS: a message-passing parallel molecular dynamics implementation, Comput Phys Commun
Biot, Daher, Chavain, Fandeur, Khalife et al., Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities, J. Med. Chem
Boonstra, Onck, Van Der Giessen, CHARMM TIP3P water model suppresses peptide folding by solvating the unfolded state, The journal of physical chemistry B
Bosseboeuf, Aubry, Nhan, Pina, Rolain et al., Azithromycin inhibits the replication of Zika virus, J Antivirals Antiretrovirals
Delvecchio, Higa, Pezzuto, Valadão, Garcez et al., Chloroquine, an endocytosis blocking agent, inhibits Zika virus infection in different cell models, Viruses
Devaux, Rolain, Raoult, ACE2 receptor polymorphism: susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome, Journal of Microbiology, Immunology and Infection
Fantini, Di Scala, Chahinian, Yahi, Structural and molecular modeling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection, Int. J. Antimicrob. Agents
Felsenstein, Herbert, Mcnamara, Hedrich, COVID-19: immunology and treatment options, Clinical Immunology
Furuta, Komeno, Nakamura, Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase, Proceedings of the Japan Academy, Series B
Gao, Tian, Yangbreakthrough, Chloroquine Phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies, Biosci Trends, doi:10.5582/bst.2020.01047
Gautret, Lagier, Parola, Meddeb, Mailhe et al., Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial, Int. J. Antimicrob. Agents
Huang, Wang, Li, Ren, Zhao et al., Clinical features of patients infected with 2019 novel coronavirus in, The lancet
Kandeel, Al-Nazawi, Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease, Life Sci
Lee, Tran, Allsopp, Lim, Hénin et al., CHARMM36 united atom chain model for lipids and surfactants, The journal of physical chemistry B
Liu, Cao, Xu, Wang, Zhang et al., Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro, Cell Discov
Liu, Zhou, Li, Garner, Watkins et al., Research and Development On Therapeutic Agents and Vaccines For COVID-19 and Related Human Coronavirus Diseases
Marmor, Kellner, Lai, Melles, Mieler, Recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2016 revision), Ophthalmology
Mcbride, Van Zyl, Fielding, The coronavirus nucleocapsid is a multifunctional protein, Viruses
Peiris, Lai, Poon, Guan, Yam et al., Coronavirus as a possible cause of severe acute respiratory syndrome, The Lancet
Pettersen, Goddard, Huang, Couch, Greenblatt et al., UCSF Chimera-A visualization system for exploratory research and analysis, J Comput Chem
Retallack, Di Lullo, Arias, Knopp, Laurie et al., Zika virus cell tropism in the developing human brain and inhibition by azithromycin, Proceedings of the National Academy of Sciences
Savarino, Boelaert, Cassone, Majori, Cauda, Effects of chloroquine on viral infections: an old drug against today's diseases, The Lancet infectious diseases
Stadler, Masignani, Eickmann, Becker, Abrignani et al., SARS-Beginning to understand a new virus, Nature Reviews Microbiology
Tahir, Shah, Zaman, Khan, A Dynamic Compartmental Mathematical Model Describing The Transmissibility Of MERS-CoV Virus In Public, Punjab University Journal of Mathematics
Trott, Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J Comput Chem
Velthuis, Van Den Worm, Sims, Baric, Snijder et al., Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture, PLoS Pathog
Wang, Cao, Zhang, Yang, Liu et al., Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res
Wang, Zhang, Du, Du, Zhao et al., Remdesivir in Adults With Severe COVID-19: a randomised, Double-Blind, placebo-controlled, multicentre trial, The Lancet
Xue, Moyer, Peng, Wu, Hannafon et al., Chloroquine is a zinc ionophore, PLoS ONE
Zumla, Hui, Perlman, Middle East respiratory syndrome, The Lancet
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Vaccines and treatments are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop