Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19hcq.org COVID-19 treatment researchHCQHCQ (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Biophysical Analysis of Potential Inhibitors of SARS-CoV-2 Cell Recognition and Their Effect on Viral Dynamics in Different Cell Types: A Computational Prediction from In Vitro Experimental Data

González-Paz et al., ACS Omega, doi:10.1021/acsomega.3c06968
Feb 2024  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
HCQ for COVID-19
1st treatment shown to reduce risk in March 2020, now with p < 0.00000000001 from 419 studies, recognized in 46 countries.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 112 treatments. c19hcq.org
In Silico study showing that nafamostat, camostat, chloroquine, hydroxychloroquine, telmisartan, and captopril may be beneficial for COVID-19 by inhibiting SARS-CoV-2 cell entry and replication in multiple cell types expressing ACE2 and TMPRSS2 receptors. Authors used mathematical models to predict the susceptibility of different cell lines to SARS-CoV-2 infection based on their expression of various viral entry receptors. The CaLu3 cell line was predicted to be most susceptible, potentially due to high expression of CD147 and Cathepsin-L. Molecular docking simulations found that nafamostat and camostat had the most favorable binding affinities and stability when interacting with the SARS-CoV-2 spike protein receptor-binding domain (RBD) compared to other tested compounds. Chloroquine and hydroxychloroquine were predicted to have around 80% and 72% antiviral efficacy, respectively, possibly by blocking the interaction between the spike protein and ACE2 receptor. Telmisartan and captopril, both related to the renin-angiotensin system, were predicted to have 56-59% antiviral efficacy, potentially by reducing ACE2 expression and making cells less susceptible to infection. The study predicts that these compounds could significantly reduce viral infectivity and replication in Vero E6, HEK293, HeLa, and CaLu3 cells, with nafamostat being the most effective overall.
38 preclinical studies support the efficacy of HCQ for COVID-19:
González-Paz et al., 14 Feb 2024, peer-reviewed, 8 authors.
In Silico studies are an important part of preclinical research, however results may be very different in vivo.
This PaperHCQAll
Biophysical Analysis of Potential Inhibitors of SARS-CoV-2 Cell Recognition and Their Effect on Viral Dynamics in Different Cell Types: A Computational Prediction from In Vitro Experimental Data
Lenin González-Paz, María Carla Lossada, María Laura Hurtado-León, Joan Vera-Villalobos, José L Paz, Yovani Marrero-Ponce, Felix Martinez-Rios, Ysaías. J Alvarado
ACS Omega, doi:10.1021/acsomega.3c06968
Recent reports have suggested that the susceptibility of cells to SARS-CoV-2 infection can be influenced by various proteins that potentially act as receptors for the virus. To investigate this further, we conducted simulations of viral dynamics using different cellular systems (Vero E6, HeLa, HEK293, and CaLu3) in the presence and absence of drugs (anthelmintic, ARBs, anticoagulant, serine protease inhibitor, antimalarials, and NSAID) that have been shown to impact cellular recognition by the spike protein based on experimental data. Our simulations revealed that the susceptibility of the simulated cell systems to SARS-CoV-2 infection was similar across all tested systems. Notably, CaLu3 cells exhibited the highest susceptibility to SARS-CoV-2 infection, potentially due to the presence of receptors other than ACE2, which may account for a significant portion of the observed susceptibility. Throughout the study, all tested compounds showed thermodynamically favorable and stable binding to the spike protein. Among the tested compounds, the anticoagulant nafamostat demonstrated the most favorable characteristics in terms of thermodynamics, kinetics, theoretical antiviral activity, and potential safety (toxicity) in relation to SARS-CoV-2 spike proteinmediated infections in the tested cell lines. This study provides mathematical and bioinformatic models that can aid in the identification of optimal cell lines for compound evaluation and detection, particularly in studies focused on repurposed drugs and their mechanisms of action. It is important to note that these observations should be experimentally validated, and this research is expected to inspire future quantitative experiments.
Notes The authors declare no competing financial interest. ■ ACKNOWLEDGMENTS This research was supported by regular funds of the Venezuelan Institute for Scientific Research (IVIC). J.L.P. thanks the Vicerrectorado de Investigación y Postgrado of the Universidad Nacional Mayor de San Marcos for the computational resources used.
References
Abernathy, Abernathy, Stevens, A mathematical model for tumor growth and treatment using virotherapy, AIMS Math, doi:10.3934/math.2020265
Appelberg, Gupta, Svensson Akusjärvi, Ambikan, Mikaeloff et al., Dysregulation in Akt/mTOR/HIF-1 signaling identified by proteo-transcriptomics of SARS-CoV-2 infected cells, Emerging microbes & infections, doi:10.1080/22221751.2020.1799723
Baccam, Beauchemin, Macken, Hayden, Perelson, Kinetics of influenza A virus infection in humans, Journal of virology, doi:10.1128/JVI.01623-05
Bairoch, The cellosaurus, a cell-line knowledge resource, Journal of biomolecular techniques: JBT, doi:10.7171/jbt.18-2902-002
Banerjee, Eckert, Schrey, Preissner, ProTox-II: a webserver for the prediction of toxicity of chemicals, Nucleic acids research, doi:10.1093/nar/gky318
Bar-On, Flamholz, Phillips, Milo, Science Forum: SARS-CoV-2 (COVID-19) by the numbers, Elife, doi:10.7554/eLife.57309
Bollavaram, Leeman, Lee, Kulkarni, Upshaw et al., Multiple sites on SARS-CoV-2 spike protein are susceptible to proteolysis by cathepsins B, Protein science: a publication of the Protein Society, doi:10.1002/pro.4073
Burlingham, Widlanski, An intuitive look at the relationship of Ki and IC50: a more general use for the Dixon plot, J. Chem. Educ, doi:10.1021/ed080p214?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
Campbell, Boilard, Rondina, Is there a role for the ACE2 receptor in SARS-CoV-2 interactions with platelets, Journal of Thrombosis and Haemostasis, doi:10.1111/jth.15156
Cer, Mudunuri, Stephens, Lebeda, IC50-to-Ki: a web-based tool for converting IC50 to Ki values for inhibitors of enzyme activity and ligand binding, Nucleic Acids Res, doi:10.1093/nar/gkp253
Chen, Liu, Guo, Emerging coronaviruses: Genome structure, replication, and pathogenesis, J. Med. Virol, doi:10.1002/jmv.25681
Choi, Son, Kim, Na, Uversky et al., Improved prediction of protein-protein interactions by a modified strategy using three conventional docking software in combination, Int. J. Biol. Macromol, doi:10.1016/j.ijbiomac.2023.126526
Chu, Chan, Yuen, Shuai, Yuan et al., Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study, Lancet. Microbe, doi:10.1016/S2666-5247(20)30004-5
Coghi, Yang, Ng, Haynes, Memo et al., A drug repurposing approach for antimalarials interfering with SARS-CoV-2 spike protein receptor binding domain (RBD) and human angiotensin-converting enzyme 2 (ACE2), Pharmaceuticals, doi:10.3390/ph14100954
Cuervo, Grandvaux, ACE2: Evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities, Elife, doi:10.7554/eLife.61390
Czuppon, Débarre, Goncalves, Tenaillon, Perelson et al., Success of prophylactic antiviral therapy for SARS-CoV-2: Predicted critical efficacies and impact of different drug-specific mechanisms of action, PLoS computational biology, doi:10.1371/journal.pcbi.1008752
De Bruin, Schneider, Reus, Talmon, Ciesek et al., Ibuprofen, Flurbiprofen, Etoricoxib or Paracetamol Do Not Influence ACE2 Expression and Activity In Vitro or in Mice and Do Not Exacerbate In-Vitro SARS-CoV-2 Infection, Int. J. Mol. Sci, doi:10.3390/ijms23031049
Digre, Lindskog, The human protein atlas�spatial localization of the human proteome in health and disease, Protein Sci, doi:10.1002/pro.3987
Dittmar, Lee, Whig, Segrist, Li et al., Drug repurposing screens reveal cell-type-specific entry pathways and FDA-approved drugs active against SARS-Cov-2, Cell reports, doi:10.1016/j.celrep.2021.108959
Dobrindt, Hoagland, Seah, Kassim, O'shea et al., Common genetic variation in humans impacts in vitro susceptibility to SARS-CoV-2 infection, Stem Cell Rep, doi:10.1016/j.stemcr.2021.02.010
Duru, Umar, Duru, Enenebeaku, Ngozi-Olehi et al., Blocking the interactions between human ACE2 and coronavirus spike glycoprotein by selected drugs: a computational perspective, Environ. Anal. Health Toxicol, doi:10.5620/eaht.2021010?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
Felline, Seeber, Fanelli, webPSN v2. 0: a webserver to infer fingerprints of structural communication in biomacromolecules, Nucleic Acids Res, doi:10.1093/nar/gkaa397
Fenizia, Galbiati, Vanetti, Vago, Clerici et al., SARS-CoV-2 Entry: At the Crossroads of CD147 and ACE2, Cell, doi:10.3390/cells10061434
Fiege, Thiede, Nanda, Matchett, Moore et al., Single cell resolution of SARS-CoV-2 tropism, antiviral responses, and susceptibility to therapies in primary human airway epithelium, PLoS Pathogens, doi:10.1371/journal.ppat.1009292
Gendrot, Javelle, Clerc, Savini, Pradines, Chloroquine as a prophylactic agent against COVID-19?, International journal of antimicrobial agents, doi:10.1016/j.ijantimicag.2020.105980
Gesztelyi, Zsuga, Kemeny-Beke, Varga, Juhasz et al., The Hill equation and the origin of quantitative pharmacology, Archive for history of exact sciences, doi:10.1007/s00407-012-0098-5
Goncalves, Bertrand, Ke, Comets, De Lamballerie et al., Timing of antiviral treatment initiation is critical to reduce SARS-CoV-2 viral load, CPT: Pharmacometrics Syst. Pharmacol, doi:10.1002/psp4.12543
González-Paz, Alvarado, Hurtado-León, Lossada, Vera-Villalobos et al., Comparative study of SARS-CoV-2 infection in different cell types: Biophysical-computational approach to the role of potential receptors, Computers in biology and medicine, doi:10.1016/j.compbiomed.2022.105245
González-Paz, Lossada, Fernández-Materán, Paz, Vera-Villalobos et al., Can Non-steroidal Antiinflammatory Drugs Affect the Interaction Between Receptor Binding Domain of SARS-COV-2 Spike and the Human ACE2 Receptor? A Computational Biophysical Study, Front. Phys, doi:10.3389/fphy.2020.587606
González-Paz, Lossada, Moncayo, Romero, Paz et al., A Bioinformatics Study of Structural Perturbation of 3CL-Protease and the HR2-Domain of SARS-CoV-2 Induced by Synergistic Interaction with Ivermectins, Biointerface Research in Applied. Chemistry, doi:10.33263/BRIAC112.98139826?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
Gupta, Biswal, Panda, Ray, Rana, Binding mechanism and structural insights into the identified protein target of COVID-19 and importin-α with in-vitro effective drug ivermectin, J. Biomol. Struct. Dyn, doi:10.1080/07391102.2020.1839564
Gutiérrez-Chamorro, Riveira-Munõz, Barrios, Palau, Nevot et al., SARS-CoV-2 Infection Modulates ACE2 Function and Subsequent Inflammatory Responses in Swabs and Plasma of COVID-19 Patients, Viruses, doi:10.3390/v13091715
Hempel, Raich, Olsson, Azouz, Klingler et al., Molecular mechanism of inhibiting the SARS-CoV-2 cell entry facilitator TMPRSS2 with camostat and nafamostat, Chemical Science, doi:10.1039/D0SC05064D
Hikmet, Méar, Edvinsson, Micke, Uhlén et al., The protein expression profile of ACE2 in human tissues, Molecular systems biology, doi:10.15252/msb.20209610
Hoffmann, Kleine-Weber, Schroeder, Kruger, Herrler et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell, doi:10.1016/j.cell.2020.02.052
Isaac-Lam, Molecular modeling of the interaction of ligands with ACE2-SARS-CoV-2 spike protein complex, silico pharmacology, doi:10.1007/s40203-021-00114-w
Jafary, Jafari, Ganjalikhany, In silico investigation of critical binding pattern in SARS-CoV-2 spike protein with angiotensinconverting enzyme 2, Sci. Rep, doi:10.1038/s41598-021-86380-2
Ji, Svensson, Zoufir, Bender, eMolTox: prediction of molecular toxicity with confidence, Bioinformatics, doi:10.1093/bioinformatics/bty135
Johnson, Xie, Bailey, Loss of FURIN cleavage site attenuates SARS-CoV-2 pathogenesis, Nature, doi:10.1038/s41586-021-03237-4
Kalhor, Sadeghi, Abolhasani, Kalhor, Rahimi, Repurposing of the approved small molecule drugs in order to inhibit SARS-CoV-2 S protein and human ACE2 interaction through virtual screening approaches, J. Biomol. Struct. Dyn, doi:10.1080/07391102.2020.1824816
Kasahara, Terazawa, Itaya, Goto, Nakamura et al., myPresto/omegagene 2020: a molecular dynamics simulation engine for virtual-system coupled sampling, Biophysics and Physicobiology, doi:10.2142/biophysico.BSJ-2020013
Keyaerts, Vijgen, Maes, Neyts, Ranst, Growth kinetics of SARS-coronavirus in Vero E6 cells, Biochem. Biophys. Res. Commun, doi:10.1016/j.bbrc.2005.02.085
Kim, Melgoza, Jiang, Guo, The effect of reninangiotensin-aldosterone system inhibitors on organ-specific ace2 expression in zebrafish and its implications for COVID-19, Sci. Rep, doi:10.1038/s41598-021-03244-5
Kishimoto, Uemura, Sanaki, Sato, Hall et al., TMPRSS11D and TMPRSS13 Activate the SARS-CoV-2 Spike Protein, Viruses, doi:10.3390/v13030384
Kitagawa, Arai, Iida, Mukai, Furukawa et al., A phase I study of high dose camostat mesylate in healthy adults provides a rationale to repurpose the TMPRSS2 inhibitor for the treatment of COVID-19, Clinical and translational science, doi:10.1111/cts.13052
Kumar, Ter Ellen, Bouma, Troost, Van De Pol et al., Moxidectin and Ivermectin Inhibit SARS-CoV-2 Replication in Vero E6 Cells but Not in Human Primary Bronchial Epithelial Cells, Antimicrob. Agents Chemother, doi:10.1128/AAC.01543-21
Kumari, Kumar, Dhankhar, Dalal, Promising antivirals for PLpro of SARS-CoV-2 using virtual screening, molecular docking, dynamics, and MMPBSA, J. Biomol. Struct. Dyn, doi:10.1080/07391102.2022.2071340
Kyrou, Randeva, Spandidos, Karteris, Not only ACE2�the quest for additional host cell mediators of SARS-CoV-2 infection: Neuropilin-1 (NRP1) as a novel SARS-CoV-2 host cell entry mediator implicated in COVID-19, Signal transduction and targeted therapy, doi:10.1038/s41392-020-00460-9
Li, Li, Huang, Wu, Liu et al., Identify potent SARS-CoV-2 main protease inhibitors via accelerated free energy perturbation-based virtual screening of existing drugs, Proc. Natl. Acad. Sci. U. S. A, doi:10.1073/pnas.2010470117
Liu, Han, Blair, Kenst, Qin et al., SARS-CoV-2 Infects Endothelial Cells In Vivo and In Vitro, Frontiers in cellular and infection microbiology, doi:10.3389/fcimb.2021.701278
Liu, Wang, Zhou, Zhao, Zhang et al., Potential role of ACE2 in coronavirus disease 2019 (COVID-19) prevention and management, Journal of translational internal medicine, doi:10.2478/jtim-2020-0003
Matsuyama, Kawase, Nao, Shirato, Ujike et al., The Inhaled Steroid Ciclesonide Blocks SARS-CoV-2 RNA Replication by Targeting the Viral Replication-Transcription Complex in Cultured Cells, Journal of virology, doi:10.1128/JVI.01648-20
Modrof, Kerschbaum, Farcet, Niemeyer, Corman et al., SARS-CoV-2 and the safety margins of cellbased biological medicinal products, Biologicals, doi:10.1016/j.biologicals.2020.08.010
Moon, Hong, Bae, Treatment effect of nafamostat mesylate in patients with COVID-19 pneumonia: study protocol for a randomized controlled trial, Trials, doi:10.1186/s13063-021-05760-1
Mosquera-Yuqui, Lopez-Guerra, Moncayo-Palacio, Targeting the 3CLpro and RdRp of SARS-CoV-2 with phytochemicals from medicinal plants of the Andean Region: molecular docking and molecular dynamics simulations, J. Biomol. Struct. Dyn, doi:10.1080/07391102.2020.1835716
Murgolo, Therien, Howell, Klein, Koeplinger et al., SARS-CoV-2 tropism, entry, replication, and propagation: Considerations for drug discovery and development, PLoS pathogens, doi:10.1371/journal.ppat.1009225
Nguyen, Binder, Boianelli, Meyer-Hermann, Hernandez-Vargas, Ebola virus infection modeling and identifiability problems, Frontiers in microbiology, doi:10.3389/fmicb.2015.00257
Nguyen, Hernández-Vargas, Parameter Estimation in Mathematical Models of Viral Infections Using R, Methods in molecular biology, doi:10.1007/978-1-4939-8678-1_25
Owen, Neary, Box, Sharp, Tatham et al., Evaluation of intranasal nafamostat or camostat for SARS-CoV-2 chemoprophylaxis in Syrian golden hamsters, bioRxiv, doi:10.1101/2021.07.08.451654?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
Park, Kim, Park, Maharjan, Kim et al., Differential Signaling and Virus Production in Calu-3 Cells and Vero Cells upon SARS-CoV-2 Infection, Biomolecules & therapeutics, doi:10.4062/biomolther.2020.226
Peixoto, Monteiro, Rocha, Veiga-Fernandes, Quantification of multiple gene expression in individual cells, Genome research, doi:10.1101/gr.2890204
Perelson, Deeks, Drug effectiveness explained: the mathematics of antiviral agents for HIV, Science translational medicine, doi:10.1126/scitranslmed.3002656
Pontelli, Castro, Martins, Veras, Serra et al., Infection of human lymphomononuclear cells by SARS-CoV-2. bioRxiv: the preprint server for biology, doi:10.1101/2020.07.28.225912?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
Prinz, Hill coefficients, dose-response curves and allosteric mechanisms, Journal of chemical biology, doi:10.1007/s12154-009-0029-3
Quiroga, Villarreal, Vinardo, A scoring function based on autodock vina improves scoring, docking, and virtual screening, PloS one, doi:10.1371/journal.pone.0155183
Rajah, Hubert, Bishop, Saunders, Robinot et al., SARS-CoV-2 Alpha, Beta, and Delta variants display enhanced Spike-mediated syncytia formation, EMBO J, doi:10.15252/embj.2021108944
Reus, Schneider, Ulshöfer, Henke, Bojkova et al., Characterization of ACE Inhibitors and AT1R Antagonists with Regard to Their Effect on ACE2 Expression and Infection with SARS-CoV-2 Using a Caco-2 Cell Model, Life, doi:10.3390/life11080810
Rothlin, Vetulli, Duarte, Pelorosso, Telmisartan as tentative angiotensin receptor blocker therapeutic for COVID-19, Drug Dev. Res, doi:10.1002/ddr.21679
Saraswat, Riaz, Patel, In-silico study for the screening and preparation of ionic liquid-AVDs conjugate to combat COVID-19 surge, J. Mol. Liq, doi:10.1016/j.molliq.2022.119277
Saraswat, Singh, Patel, A computational approach for the screening of potential antiviral compounds against SARS-CoV-2 protease: Ionic liquid vs herbal and natural compounds, Journal of molecular liquids, doi:10.1016/j.molliq.2021.115298
Schroeder, Pott, Niemeyer, Veith, Richter et al., Interferon antagonism by SARS-CoV-2: a functional study using reverse genetics, Lancet Microbe, doi:10.1016/S2666-5247(21)00027-6
Shamsi, Mohammad, Anwar, Alajmi, Hussain et al., Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: possible implication in COVID-19 therapy, Bioscience Reports, doi:10.1042/BSR20201256
Shilts, Crozier, Greenwood, Lehner, Wright, No evidence for basigin/CD147 as a direct SARS-CoV-2 spike binding receptor, Sci. Rep, doi:10.1038/s41598-020-80464-1
Smart, Fawkes, Goggin, Pennick, Rainsford et al., A narrative review of the potential pharmacological influence and safety of ibuprofen on coronavirus disease 19 (COVID-19), ACE2, and the immune system: a dichotomy of expectation and reality, Inflammopharmacology, doi:10.1007/s10787-020-00745-z
Sulaiman, Chung, Angel, Tsay, Wu et al., Microbial signatures in the lower airways of mechanically ventilated COVID-19 patients associated with poor clinical outcome, Nat. Microbiol, doi:10.1038/s41564-021-00961-5
Takayama, In vitro and animal models for SARS-CoV-2 research, Trends in pharmacological sciences, doi:10.1016/j.tips.2020.05.005
Ter Ellen, Dinesh Kumar, Bouma, Troost, Van De Pol et al., Resveratrol and Pterostilbene Inhibit SARS-CoV-2 Replication in Air-Liquid Interface Cultured Human Primary Bronchial Epithelial Cells, Viruses, doi:10.3390/v13071335
Terrier, Dilly, Pizzorno, Chalupska, Humpolickova et al., Antiviral Properties of the NSAID Drug Naproxen Targeting the Nucleoprotein of SARS-CoV-2 Coronavirus, Molecules, doi:10.3390/molecules26092593
Tiwari, Fuglebakk, Hollup, Skjaerven, Cragnolini et al., WEBnm@ v2.0: Web server and services for comparing protein flexibility, BMC Bioinformatics, doi:10.1186/s12859-014-0427-6
Vincent, Bergeron, Benjannet, Erickson, Rollin et al., Chloroquine is a potent inhibitor of SARS coronavirus infection and spread, Virology journal, doi:10.1186/1743-422X-2-69
Viveiros, Gheblawi, Aujla, Sosnowski, Seubert et al., Sex-and age-specific regulation of ACE2: Insights into severe COVID-19 susceptibility, Journal of molecular and cellular cardiology, doi:10.1016/j.yjmcc.2021.11.003
Wang, Qiu, Hou, Deng, Xu et al., AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells, Cell Res, doi:10.1038/s41422-020-00460-y
Wang, Wang, Li, Lei, Wang et al., farPPI: a webserver for accurate prediction of proteinligand binding structures for small-molecule PPI inhibitors by MM/ PB(GB)SA methods, Bioinformatics, doi:10.1093/bioinformatics/bty879
Whittaker, SARS-CoV-2 spike and its adaptable FURIN cleavage site, Lancet Microbe, doi:10.1016/S2666-5247(21)00174-9
Wysocki, Lores, Ye, Soler, Batlle, Kidney and lung ACE2 expression after an ACE inhibitor or an Ang II receptor blocker: implications for COVID-19, Journal of the American Society of Nephrology, doi:10.1681/ASN.2020050667
Xie, Ying, Xie, Smpbs, Web server for computing biomolecular electrostatics using finite element solvers of size modified Poisson-Boltzmann equation, J. Comput. Chem, doi:10.1002/jcc.24703
Xiu, Dick, Ju, Mirzaie, Abdi et al., Inhibitors of SARS-CoV-2 entry: current and future opportunities, Journal of medicinal chemistry, doi:10.1021/acs.jmedchem.0c00502?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
Yamamoto, Matsuyama, Li, Takeda, Kawaguchi et al., Identification of nafamostat as a potent inhibitor of Middle East respiratory syndrome coronavirus S proteinmediated membrane fusion using the split-protein-based cell-cell fusion assay, Antimicrob. Agents Chemother, doi:10.1128/AAC.01043-16
Yu, Organoids: a new model for SARS-CoV-2 translational research, International. Journal of Stem Cells, doi:10.15283/ijsc20169
Zhang, Chu, Han, Shuai, Deng et al., SARS-CoV-2 infects human neural progenitor cells and brain organoids, Cell research, doi:10.1038/s41422-020-0390-x
Zhuravel, Khmelnitskiy, Burlaka, Gritsan, Goloshchekin et al., Nafamostat in hospitalized patients with moderate to severe COVID-19 pneumonia: a randomised Phase II clinical trial, EClinicalMedicine, doi:10.1016/j.eclinm.2021.101169
{ 'indexed': {'date-parts': [[2024, 3, 1]], 'date-time': '2024-03-01T10:19:34Z', 'timestamp': 1709288374150}, 'reference-count': 91, 'publisher': 'American Chemical Society (ACS)', 'issue': '8', 'license': [ { 'start': { 'date-parts': [[2024, 2, 14]], 'date-time': '2024-02-14T00:00:00Z', 'timestamp': 1707868800000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by-nc-nd/4.0/'}], 'funder': [{'name': 'Instituto Venezolano de Investigaciones Cient??ficas'}], 'content-domain': {'domain': [], 'crossmark-restriction': False}, 'published-print': {'date-parts': [[2024, 2, 27]]}, 'DOI': '10.1021/acsomega.3c06968', 'type': 'journal-article', 'created': {'date-parts': [[2024, 2, 14]], 'date-time': '2024-02-14T10:06:02Z', 'timestamp': 1707905162000}, 'page': '8923-8939', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Biophysical Analysis of Potential Inhibitors of SARS-CoV-2 Cell Recognition and Their Effect on ' 'Viral Dynamics in Different Cell Types: A Computational Prediction from In Vitro Experimental ' 'Data', 'prefix': '10.1021', 'volume': '9', 'author': [ { 'ORCID': 'http://orcid.org/0000-0003-0023-7342', 'authenticated-orcid': True, 'given': 'Lenin', 'family': 'González-Paz', 'sequence': 'first', 'affiliation': [ { 'name': 'Centro de Biomedicina Molecular (CBM). Laboratorio de ' 'Biocomputación (LB),Instituto Venezolano de Investigaciones ' 'Científicas (IVIC),Maracaibo, Zulia 4001, República Bolivariana ' 'de Venezuela'}]}, { 'given': 'Carla', 'family': 'Lossada', 'sequence': 'additional', 'affiliation': [ { 'name': 'Centro de Biomedicina Molecular (CBM). Laboratorio de ' 'Biocomputación (LB),Instituto Venezolano de Investigaciones ' 'Científicas (IVIC),Maracaibo, Zulia 4001, República Bolivariana ' 'de Venezuela'}]}, { 'given': 'María Laura', 'family': 'Hurtado-León', 'sequence': 'additional', 'affiliation': [ { 'name': 'Facultad Experimental de Ciencias (FEC). Departamento de ' 'Biología. Laboratorio de Genética y Biología Molecular ' '(LGBM),Universidad del Zulia (LUZ),Maracaibo 4001, República ' 'Bolivariana de Venezuela'}]}, { 'given': 'Joan', 'family': 'Vera-Villalobos', 'sequence': 'additional', 'affiliation': [ { 'name': 'Facultad de Ciencias Naturales y Matemáticas, Departamento de ' 'Química y Ciencias Ambientales, Laboratorio de Análisis Químico ' 'Instrumental (LAQUINS), Escuela Superior Politécnica del ' 'Litoral, Guayaquil EC090112, Ecuador'}]}, { 'ORCID': 'http://orcid.org/0000-0002-6177-7919', 'authenticated-orcid': True, 'given': 'José L.', 'family': 'Paz', 'sequence': 'additional', 'affiliation': [ { 'name': 'Departamento Académico de Química Inorgánica, Facultad de ' 'Química e Ingeniería Química, Universidad Nacional Mayor de San ' 'Marcos. Cercado de Lima, Lima 15081, Perú'}]}, { 'given': 'Yovani', 'family': 'Marrero-Ponce', 'sequence': 'additional', 'affiliation': [ { 'name': 'Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de ' 'Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de ' 'Especialidades Médicas; e Instituto de Simulación Computacional ' '(ISC-USFQ), Diego de Robles y vía Interoceánica, Universidad San ' 'Francisco de Quito (USFQ), Quito, Pichincha 170157, Ecuador'}]}, { 'given': 'Felix', 'family': 'Martinez-Rios', 'sequence': 'additional', 'affiliation': [ { 'name': 'Universidad Panamericana. Facultad de Ingeniería. Augusto Rodin ' '498, Ciudad de México 03920, México'}]}, { 'ORCID': 'http://orcid.org/0000-0002-2709-409X', 'authenticated-orcid': True, 'given': 'Ysaías. J.', 'family': 'Alvarado', 'sequence': 'additional', 'affiliation': [ { 'name': 'Centro de Biomedicina Molecular (CBM). Laboratorio de Química ' 'Biofísica Teórica y Experimental (LQBTE),Instituto Venezolano de ' 'Investigaciones Científicas (IVIC),Maracaibo, Zulia 4001, ' 'República Bolivariana de Venezuela'}]}], 'member': '316', 'published-online': {'date-parts': [[2024, 2, 14]]}, 'reference': [ {'key': 'ref1/cit1', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/jmv.25681'}, {'key': 'ref2/cit2', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/cells10061434'}, {'key': 'ref3/cit3', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41392-020-00460-9'}, {'key': 'ref4/cit4', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.stemcr.2021.02.010'}, {'key': 'ref5/cit5', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41598-021-86380-2'}, {'key': 'ref6/cit6', 'doi-asserted-by': 'publisher', 'DOI': '10.15252/msb.20209610'}, {'key': 'ref7/cit7', 'doi-asserted-by': 'publisher', 'DOI': '10.1111/jth.15156'}, {'key': 'ref8/cit8', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S2666-5247(21)00174-9'}, {'key': 'ref9/cit9', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41586-021-03237-4'}, {'key': 'ref10/cit10', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/pro.4073'}, {'key': 'ref11/cit11', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.bbrc.2005.02.085'}, {'key': 'ref12/cit12', 'doi-asserted-by': 'publisher', 'DOI': '10.7554/eLife.57309'}, {'key': 'ref13/cit13', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fcimb.2021.701278'}, {'key': 'ref14/cit14', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/AAC.01543-21'}, {'key': 'ref15/cit15', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/psp4.12543'}, {'key': 'ref16/cit16', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cell.2020.02.052'}, { 'key': 'ref17/cit17', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acs.jmedchem.0c00502'}, {'key': 'ref18/cit18', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/AAC.01043-16'}, {'key': 'ref19/cit19', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fphy.2020.587606'}, {'key': 'ref20/cit20', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/molecules26092593'}, {'key': 'ref21/cit21', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/1743-422X-2-69'}, {'key': 'ref22/cit22', 'doi-asserted-by': 'publisher', 'DOI': '10.1681/ASN.2020050667'}, {'key': 'ref23/cit23', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s40203-021-00114-w'}, {'key': 'ref24/cit24', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fmicb.2015.00257'}, {'key': 'ref25/cit25', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.01623-05'}, { 'key': 'ref26/cit26', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/978-1-4939-8678-1_25'}, {'key': 'ref27/cit27', 'doi-asserted-by': 'publisher', 'DOI': '10.3934/math.2020265'}, {'key': 'ref28/cit28', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/pro.3987'}, {'key': 'ref29/cit29', 'doi-asserted-by': 'publisher', 'DOI': '10.7554/eLife.61390'}, {'key': 'ref30/cit30', 'doi-asserted-by': 'publisher', 'DOI': '10.7171/jbt.18-2902-002'}, {'key': 'ref31/cit31', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41598-020-80464-1'}, { 'key': 'ref32/cit32', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S2666-5247(20)30004-5'}, {'key': 'ref33/cit33', 'doi-asserted-by': 'publisher', 'DOI': '10.1101/gr.2890204'}, {'key': 'ref34/cit34', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.01648-20'}, { 'key': 'ref35/cit35', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.biologicals.2020.08.010'}, { 'key': 'ref36/cit36', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S2666-5247(21)00027-6'}, { 'key': 'ref37/cit37', 'doi-asserted-by': 'publisher', 'DOI': '10.1080/22221751.2020.1799723'}, {'key': 'ref38/cit38', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/v13071335'}, {'key': 'ref39/cit39', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/v13030384'}, {'key': 'ref40/cit40', 'doi-asserted-by': 'publisher', 'DOI': '10.1101/2020.07.28.225912'}, { 'key': 'ref41/cit41', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.ppat.1009292'}, {'key': 'ref42/cit42', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41422-020-0390-x'}, {'key': 'ref43/cit43', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/ph14100954'}, { 'key': 'ref44/cit44', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.ijbiomac.2023.126526'}, {'key': 'ref45/cit45', 'doi-asserted-by': 'publisher', 'DOI': '10.1042/BSR20201256'}, {'key': 'ref46/cit46', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkp253'}, {'key': 'ref47/cit47', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.2010470117'}, {'key': 'ref48/cit48', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/ed080p214'}, {'key': 'ref49/cit49', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/v13091715'}, {'key': 'ref50/cit50', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/life11080810'}, {'key': 'ref51/cit51', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/s13063-021-05760-1'}, { 'key': 'ref52/cit52', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.eclinm.2021.101169'}, {'key': 'ref53/cit53', 'doi-asserted-by': 'publisher', 'DOI': '10.1111/cts.13052'}, {'key': 'ref54/cit54', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/ddr.21679'}, { 'key': 'ref55/cit55', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.ijantimicag.2020.105980'}, {'key': 'ref56/cit56', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s10787-020-00745-z'}, {'key': 'ref57/cit57', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.yjmcc.2021.11.003'}, {'key': 'ref58/cit58', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41598-021-03244-5'}, {'key': 'ref59/cit59', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/ijms23031049'}, {'key': 'ref60/cit60', 'doi-asserted-by': 'publisher', 'DOI': '10.1101/2021.07.08.451654'}, { 'key': 'ref61/cit61', 'doi-asserted-by': 'publisher', 'DOI': '10.2142/biophysico.BSJ-2020013'}, {'key': 'ref62/cit62', 'doi-asserted-by': 'publisher', 'DOI': '10.33263/BRIAC112.98139826'}, {'key': 'ref63/cit63', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/s12859-014-0427-6'}, { 'key': 'ref64/cit64', 'doi-asserted-by': 'publisher', 'DOI': '10.1080/07391102.2022.2071340'}, {'key': 'ref65/cit65', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkaa397'}, {'key': 'ref66/cit66', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/jcc.24703'}, { 'key': 'ref67/cit67', 'doi-asserted-by': 'publisher', 'DOI': '10.1080/07391102.2020.1839564'}, { 'key': 'ref68/cit68', 'doi-asserted-by': 'publisher', 'DOI': '10.1080/07391102.2020.1835716'}, { 'key': 'ref69/cit69', 'doi-asserted-by': 'publisher', 'DOI': '10.1080/07391102.2020.1824816'}, { 'key': 'ref70/cit70', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/bioinformatics/bty879'}, { 'key': 'ref71/cit71', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/scitranslmed.3002656'}, {'key': 'ref72/cit72', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s12154-009-0029-3'}, {'key': 'ref73/cit73', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s00407-012-0098-5'}, { 'key': 'ref74/cit74', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.pcbi.1008752'}, { 'key': 'ref75/cit75', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/bioinformatics/bty135'}, {'key': 'ref76/cit76', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gky318'}, { 'key': 'ref77/cit77', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.compbiomed.2022.105245'}, {'key': 'ref78/cit78', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.tips.2020.05.005'}, { 'key': 'ref79/cit79', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.ppat.1009225'}, {'key': 'ref80/cit80', 'doi-asserted-by': 'publisher', 'DOI': '10.4062/biomolther.2020.226'}, {'key': 'ref81/cit81', 'doi-asserted-by': 'publisher', 'DOI': '10.5620/eaht.2021010'}, { 'key': 'ref82/cit82', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.pone.0155183'}, {'key': 'ref83/cit83', 'doi-asserted-by': 'publisher', 'DOI': '10.2478/jtim-2020-0003'}, {'key': 'ref84/cit84', 'doi-asserted-by': 'publisher', 'DOI': '10.1039/D0SC05064D'}, { 'key': 'ref85/cit85', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.molliq.2021.115298'}, { 'key': 'ref86/cit86', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.molliq.2022.119277'}, {'key': 'ref87/cit87', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41564-021-00961-5'}, {'key': 'ref88/cit88', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41422-020-00460-y'}, {'key': 'ref89/cit89', 'doi-asserted-by': 'publisher', 'DOI': '10.15252/embj.2021108944'}, { 'key': 'ref90/cit90', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.celrep.2021.108959'}, {'key': 'ref91/cit91', 'doi-asserted-by': 'publisher', 'DOI': '10.15283/ijsc20169'}], 'container-title': 'ACS Omega', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://pubs.acs.org/doi/pdf/10.1021/acsomega.3c06968', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'unspecified'}, { 'URL': 'https://pubs.acs.org/doi/pdf/10.1021/acsomega.3c06968', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2024, 2, 27]], 'date-time': '2024-02-27T10:23:32Z', 'timestamp': 1709029412000}, 'score': 1, 'resource': {'primary': {'URL': 'https://pubs.acs.org/doi/10.1021/acsomega.3c06968'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2024, 2, 14]]}, 'references-count': 91, 'journal-issue': {'issue': '8', 'published-print': {'date-parts': [[2024, 2, 27]]}}, 'alternative-id': ['10.1021/acsomega.3c06968'], 'URL': 'http://dx.doi.org/10.1021/acsomega.3c06968', 'relation': {}, 'ISSN': ['2470-1343', '2470-1343'], 'subject': ['General Chemical Engineering', 'General Chemistry'], 'container-title-short': 'ACS Omega', 'published': {'date-parts': [[2024, 2, 14]]}}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit