Analgesics
Antiandrogens
Antihistamines
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19hcq.org COVID-19 treatment researchHCQHCQ (more..)
Metformin Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta Thermotherapy Meta
Melatonin Meta

All Studies   Meta Analysis       

SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte elimination

Zhang et al., Cell Death & Differentiation, doi:10.1038/s41418-021-00782-3
Apr 2021  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
HCQ for COVID-19
1st treatment shown to reduce risk in March 2020, now with p < 0.00000000001 from 421 studies, recognized in 56 countries.
No treatment is 100% effective. Protocols combine treatments.
5,400+ studies for 117 treatments. c19hcq.org
In Vitro study showing that SARS-CoV-2 spike protein induces rapid cell fusion and formation of syncytia that internalize and kill lymphocytes, potentially contributing to lymphocytopenia in COVID-19 patients. A bi-arginine motif in the spike protein S1/S2 cleavage site was found to control membrane fusion and syncytia formation. Several candidate antiviral compounds, including arbidol, 6-D-Arg, Con A, NH4Cl, and hydroxychloroquine, inhibited spike protein processing, membrane fusion, syncytia formation, and lymphocyte internalization in 293T-ACE2 cells expressing the SARS-CoV-2 spike protein.
38 preclinical studies support the efficacy of HCQ for COVID-19:
Zhang et al., 20 Apr 2021, peer-reviewed, 27 authors. Contact: liuliang@mails.tjmu.edu.cn, hhongy1999@126.com, sunq@bmi.ac.cn.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperHCQAll
SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte elimination
Zhengrong Zhang, You Zheng, Zubiao Niu, Bo Zhang, Chenxi Wang, Xiaohong Yao, Haoran Peng, Del Nonno Franca, Yunyun Wang, Yichao Zhu, Yan Su, Meng Tang, Xiaoyi Jiang, He Ren, Meifang He, Yuqi Wang, Lihua Gao, Ping Zhao, Hanping Shi, Zhaolie Chen, Xiaoning Wang, Mauro Piacentini, Xiuwu Bian, Gerry Melino, Liang Liu, Hongyan Huang, Qiang Sun
Cell Death & Differentiation, doi:10.1038/s41418-021-00782-3
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is highly contagious and causes lymphocytopenia, but the underlying mechanisms are poorly understood. We demonstrate here that heterotypic cell-in-cell structures with lymphocytes inside multinucleate syncytia are prevalent in the lung tissues of coronavirus disease 2019 (COVID-19) patients. These unique cellular structures are a direct result of SARS-CoV-2 infection, as the expression of the SARS-CoV-2 spike glycoprotein is sufficient to induce a rapid (~45.1 nm/s) membrane fusion to produce syncytium, which could readily internalize multiple lines of lymphocytes to form typical cell-in-cell structures, remarkably leading to the death of internalized cells. This membrane fusion is dictated by a bi-arginine motif within the polybasic S1/S2 cleavage site, which is frequently present in the surface glycoprotein of most highly contagious viruses. Moreover, candidate anti-viral drugs could efficiently inhibit spike glycoprotein processing, membrane fusion, and cell-in-cell formation. Together, we delineate a molecular and cellular rationale for SARS-CoV-2 pathogenesis and identify novel targets for COVID-19 therapy.
Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
Amin, Abbas, Docking study of Chloroquine and Hydroxychloroquine interaction with SARS-CoV-2 spike glycoprotein-An in silico insight into the comparative efficacy of repurposing antiviral drugs, J Biomol Struct Dyn, doi:10.1080/07391102.2020.1775703:1-11
Andersen, Rambaut, Lipkin, Holmes, Garry, The proximal origin of SARS-CoV-2, Nat Med
Boonstra, Blijleven, Roos, Onck, Van Der Giessen et al., Hemagglutinin-mediated membrane fusion: a biophysical perspective, Annu Rev Biophys
Braga, Ali, Secco, Chiavacci, Neves et al., Drugs that inhibit TMEM16 proteins block SARS-CoV-2 Spikeinduced syncytia, Nature, doi:10.1038/s41586-021-03491-6
Fais, Overholtzer, Cell-in-cell phenomena in cancer, Nat Rev Cancer
Fan, Fang, Yang, Cui, Zhao et al., Role of heterotypic neutrophil-in-tumor structure in the prognosis of patients with Buccal Mucosa squamous cell carcinoma, Front Oncol
Fantini, Scala, Chahinian, Yahi, Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection, Int J Antimicrob Agents
Fox, Akmatbekov, Harbert, Li, Brown et al., Pulmonary and cardiac pathology in Covid-19: the first autopsy series from New Orleans, medRxiv, doi:10.1101/2020.04.06.20050575:2020.04.06.20050575
Guan, Ni, Hu, Liang, Ou et al., Clinical characteristics of coronavirus disease 2019 in China, N Engl J Med, doi:10.1056/NEJMoa2002032
Huang, Chen, Sun, Mammalian cell competitions, cell-incell phenomena and their biomedical implications, Curr Mol Med
Huang, Chen, Wang, Wang, Ning et al., Detecting cell-in-cell structures in human tumor samples by E-cadherin/CD68/CD45 triple staining, Oncotarget
Huang, He, Zhang, Zhang, Niu et al., Identification and validation of heterotypic cell-in-cell structure as an adverse prognostic predictor for young patients of resectable pancreatic ductal adenocarcinoma, Signal Transduct Target Ther
Jiang, Zhang, Wang, Ren, Gao et al., Bimodular effects of D614G mutation on the spike glycoprotein of SARS-CoV-2 enhance protein processing, membrane fusion, and viral infectivity, Signal Transduct Target Ther
Ledford, Safety fears over drug hyped to treat the coronavirus spark global confusion, Nature
Li, Structure, function, and evolution of coronavirus spike proteins, Annu Rev Virol
Liang, Niu, Zhang, Yu, Zheng et al., p53dependent elimination of aneuploid mitotic offspring by entosis, Cell Death Differ
Liu, Cao, Xu, Wang, Zhang et al., Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro, Cell Disco
Luo, Yu, Gou, Li, Sun et al., Clinical pathology of critical patient with novel coronavirus pneumonia (COVID-19)
Mackay, Muller, Biological relevance of cell-in-cell in cancers, Biochem Soc Trans
Niu, He, Sun, Molecular mechanisms underlying cell-incell formation: core machineries and beyond, J Mol Cell Biol, doi:10.1093/jmcb/mjab015.
Rizzotto, Villunger, P53 clears aneuploid cells by entosis, Cell Death Differ, doi:10.1038/s41418-020-00659-x
Ruan, Niu, Jiang, Li, Tai et al., High frequency of cell-in-cell formation in heterogeneous human breast cancer tissue in a patient with poor prognosis: a case report and literature review, Front Oncol
Su, Ren, Tang, Zheng, Zhang et al., Role and dynamics of vacuolar pH during cell-in-cell mediated death, Cell Death Dis
Sun, Cibas, Huang, Hodgson, Overholtzer, Induction of entosis by epithelial cadherin expression, Cell Res
Sun, Luo, Ren, Florey, Shirasawa et al., Competition between human cells by entosis, Cell Res
Wang, Cao, Zhang, Yang, Liu et al., Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res
Wang, Chen, Ruan, Niu, Su et al., PCDH7 inhibits the formation of homotypic cell-in-cell structure, Front Cell Dev Biol
Wang, He, Chen, Wang, Yu et al., Rapid reuptake of granzyme B leads to emperitosis: an apoptotic cell-in-cell death of immune killer cells inside tumor cells, Cell Death Dis
Wang, Horby, Hayden, Gao, A novel coronavirus outbreak of global health concern, Lancet
Wang, Niu, Qin, Ruan, Zheng et al., Mechanical ring interfaces between adherens junction and contractile actomyosin to coordinate entotic cell-in-cell formation, Cell Rep
Who, Coronavirus disease (COVID-2019) situation report-174
Wu, Zhao, Yu, Chen, Song, A new coronavirus associated with human respiratory disease in China, Nature, doi:10.1038/s41586-020-2008-3
Xu, Shi, Wang, Zhang, Huang et al., Pathological findings of COVID-19 associated with acute respiratory distress syndrome, Lancet Respir Med, doi:10.1016/s2213-2600(20)30076-x
Yurkovetskiy, Wang, Pascal, Tomkins-Tinch, Nyalile et al., Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant, Cell
Zhang, Niu, Qin, Wang, Zhang, Subtypebased prognostic analysis of cell-in-cell structures in early breast cancer, Front Oncol
Zhengrong Zhang 1, Del Nonno Franca 5 • Yunyun Wang 6 • Yichao Zhu 1 • Yan Su 1 • Meng Tang 1, Zubiao Niu
Zhou, Niu, Jiang, Zhang, Zheng et al., SARS-CoV-2 targets by the pscRNA profiling of ACE2. TMPRSS2 Furin Proteases iScience
Zhou, Yang, Wang, Hu, Zhang et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature
Zhu, Zhang, Li, Yang, Song, A novel coronavirus from patients with pneumonia in China, 2019, N. Engl J Med
DOI record: { "DOI": "10.1038/s41418-021-00782-3", "ISSN": [ "1350-9047", "1476-5403" ], "URL": "http://dx.doi.org/10.1038/s41418-021-00782-3", "alternative-id": [ "782" ], "assertion": [ { "group": { "label": "Article History", "name": "ArticleHistory" }, "label": "Received", "name": "received", "order": 1, "value": "22 March 2021" }, { "group": { "label": "Article History", "name": "ArticleHistory" }, "label": "Revised", "name": "revised", "order": 2, "value": "7 April 2021" }, { "group": { "label": "Article History", "name": "ArticleHistory" }, "label": "Accepted", "name": "accepted", "order": 3, "value": "8 April 2021" }, { "group": { "label": "Article History", "name": "ArticleHistory" }, "label": "First Online", "name": "first_online", "order": 4, "value": "20 April 2021" }, { "group": { "label": "Compliance with ethical standards", "name": "EthicsHeading" }, "name": "Ethics", "order": 1 }, { "group": { "label": "Conflict of interest", "name": "EthicsHeading" }, "name": "Ethics", "order": 2, "value": "The authors declare no competing interests." }, { "group": { "label": "Ethics statement", "name": "EthicsHeading" }, "name": "Ethics", "order": 3, "value": "The autopsy for COVID-19 death was carried out with informed consent under the approval of Ethics Committee of Wuhan Infectious Diseases Hospital (KY-2020-15.01) and Ethics Committee of the First Affiliated Hospital of Army Medical University (KY2020298)." }, { "label": "Free to read", "name": "free", "value": "This content has been made available to all." } ], "author": [ { "affiliation": [], "family": "Zhang", "given": "Zhengrong", "sequence": "first" }, { "affiliation": [], "family": "Zheng", "given": "You", "sequence": "additional" }, { "affiliation": [], "family": "Niu", "given": "Zubiao", "sequence": "additional" }, { "affiliation": [], "family": "Zhang", "given": "Bo", "sequence": "additional" }, { "affiliation": [], "family": "Wang", "given": "Chenxi", "sequence": "additional" }, { "affiliation": [], "family": "Yao", "given": "Xiaohong", "sequence": "additional" }, { "affiliation": [], "family": "Peng", "given": "Haoran", "sequence": "additional" }, { "affiliation": [], "family": "Franca", "given": "Del Nonno", "sequence": "additional" }, { "affiliation": [], "family": "Wang", "given": "Yunyun", "sequence": "additional" }, { "affiliation": [], "family": "Zhu", "given": "Yichao", "sequence": "additional" }, { "affiliation": [], "family": "Su", "given": "Yan", "sequence": "additional" }, { "affiliation": [], "family": "Tang", "given": "Meng", "sequence": "additional" }, { "affiliation": [], "family": "Jiang", "given": "Xiaoyi", "sequence": "additional" }, { "affiliation": [], "family": "Ren", "given": "He", "sequence": "additional" }, { "affiliation": [], "family": "He", "given": "Meifang", "sequence": "additional" }, { "affiliation": [], "family": "Wang", "given": "Yuqi", "sequence": "additional" }, { "affiliation": [], "family": "Gao", "given": "Lihua", "sequence": "additional" }, { "affiliation": [], "family": "Zhao", "given": "Ping", "sequence": "additional" }, { "affiliation": [], "family": "Shi", "given": "Hanping", "sequence": "additional" }, { "affiliation": [], "family": "Chen", "given": "Zhaolie", "sequence": "additional" }, { "affiliation": [], "family": "Wang", "given": "Xiaoning", "sequence": "additional" }, { "affiliation": [], "family": "Piacentini", "given": "Mauro", "sequence": "additional" }, { "ORCID": "http://orcid.org/0000-0003-4383-0197", "affiliation": [], "authenticated-orcid": false, "family": "Bian", "given": "Xiuwu", "sequence": "additional" }, { "ORCID": "http://orcid.org/0000-0001-9428-5972", "affiliation": [], "authenticated-orcid": false, "family": "Melino", "given": "Gerry", "sequence": "additional" }, { "affiliation": [], "family": "Liu", "given": "Liang", "sequence": "additional" }, { "affiliation": [], "family": "Huang", "given": "Hongyan", "sequence": "additional" }, { "ORCID": "http://orcid.org/0000-0001-8094-2214", "affiliation": [], "authenticated-orcid": false, "family": "Sun", "given": "Qiang", "sequence": "additional" } ], "container-title": "Cell Death &amp; Differentiation", "container-title-short": "Cell Death Differ", "content-domain": { "crossmark-restriction": false, "domain": [ "link.springer.com" ] }, "created": { "date-parts": [ [ 2021, 4, 20 ] ], "date-time": "2021-04-20T17:45:22Z", "timestamp": 1618940722000 }, "deposited": { "date-parts": [ [ 2021, 9, 1 ] ], "date-time": "2021-09-01T00:26:35Z", "timestamp": 1630455995000 }, "indexed": { "date-parts": [ [ 2024, 9, 16 ] ], "date-time": "2024-09-16T15:54:00Z", "timestamp": 1726502040738 }, "is-referenced-by-count": 120, "issue": "9", "issued": { "date-parts": [ [ 2021, 4, 20 ] ] }, "journal-issue": { "issue": "9", "published-print": { "date-parts": [ [ 2021, 9 ] ] } }, "language": "en", "license": [ { "URL": "https://www.springer.com/tdm", "content-version": "tdm", "delay-in-days": 0, "start": { "date-parts": [ [ 2021, 4, 20 ] ], "date-time": "2021-04-20T00:00:00Z", "timestamp": 1618876800000 } }, { "URL": "https://www.springer.com/tdm", "content-version": "vor", "delay-in-days": 0, "start": { "date-parts": [ [ 2021, 4, 20 ] ], "date-time": "2021-04-20T00:00:00Z", "timestamp": 1618876800000 } } ], "link": [ { "URL": "https://www.nature.com/articles/s41418-021-00782-3.pdf", "content-type": "application/pdf", "content-version": "vor", "intended-application": "text-mining" }, { "URL": "https://www.nature.com/articles/s41418-021-00782-3", "content-type": "text/html", "content-version": "vor", "intended-application": "text-mining" }, { "URL": "https://www.nature.com/articles/s41418-021-00782-3.pdf", "content-type": "application/pdf", "content-version": "vor", "intended-application": "similarity-checking" } ], "member": "297", "original-title": [], "page": "2765-2777", "prefix": "10.1038", "published": { "date-parts": [ [ 2021, 4, 20 ] ] }, "published-online": { "date-parts": [ [ 2021, 4, 20 ] ] }, "published-print": { "date-parts": [ [ 2021, 9 ] ] }, "publisher": "Springer Science and Business Media LLC", "reference": [ { "DOI": "10.1038/s41586-020-2012-7", "author": "P Zhou", "doi-asserted-by": "publisher", "first-page": "270", "journal-title": "Nature", "key": "782_CR1", "unstructured": "Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–3.", "volume": "579", "year": "2020" }, { "DOI": "10.1038/s41586-020-2008-3", "doi-asserted-by": "publisher", "key": "782_CR2", "unstructured": "Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;https://doi.org/10.1038/s41586-020-2008-3." }, { "DOI": "10.1056/NEJMoa2001017", "author": "N Zhu", "doi-asserted-by": "publisher", "first-page": "727", "journal-title": "N. Engl J Med", "key": "782_CR3", "unstructured": "Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl J Med. 2020;382:727–33.", "volume": "382", "year": "2020" }, { "DOI": "10.1146/annurev-virology-110615-042301", "author": "F Li", "doi-asserted-by": "publisher", "first-page": "237", "journal-title": "Annu Rev Virol", "key": "782_CR4", "unstructured": "Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol. 2016;3:237–61.", "volume": "3", "year": "2016" }, { "DOI": "10.1038/s41392-020-00392-4", "author": "X Jiang", "doi-asserted-by": "publisher", "first-page": "268", "journal-title": "Signal Transduct Target Ther", "key": "782_CR5", "unstructured": "Jiang X, Zhang Z, Wang C, Ren H, Gao L, Peng H, et al. Bimodular effects of D614G mutation on the spike glycoprotein of SARS-CoV-2 enhance protein processing, membrane fusion, and viral infectivity. Signal Transduct Target Ther. 2020;5:268–71.", "volume": "5", "year": "2020" }, { "DOI": "10.1016/j.cell.2020.09.032", "author": "L Yurkovetskiy", "doi-asserted-by": "publisher", "first-page": "739", "journal-title": "Cell.", "key": "782_CR6", "unstructured": "Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C, Nyalile TP, Wang Y, et al. Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell. 2020;183:739–51.e8.", "volume": "183", "year": "2020" }, { "DOI": "10.1016/S0140-6736(20)30185-9", "author": "C Wang", "doi-asserted-by": "publisher", "first-page": "470", "journal-title": "Lancet", "key": "782_CR7", "unstructured": "Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020;395:470–3.", "volume": "395", "year": "2020" }, { "key": "782_CR8", "unstructured": "WHO. Coronavirus disease (COVID-2019) situation report-174. Situation reports. 2020;doi: 20200318-sitrep-174-covid-19:https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports." }, { "DOI": "10.1056/NEJMoa2002032", "doi-asserted-by": "publisher", "key": "782_CR9", "unstructured": "Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020; https://doi.org/10.1056/NEJMoa2002032." }, { "DOI": "10.2174/1566524015666151026101101", "author": "H Huang", "doi-asserted-by": "publisher", "first-page": "852", "journal-title": "Curr Mol Med", "key": "782_CR10", "unstructured": "Huang H, Chen Z, Sun Q. Mammalian cell competitions, cell-in-cell phenomena and their biomedical implications. Curr Mol Med. 2015;15:852–60.", "volume": "15", "year": "2015" }, { "DOI": "10.1042/BST20180618", "author": "HL Mackay", "doi-asserted-by": "publisher", "first-page": "725", "journal-title": "Biochem Soc Trans", "key": "782_CR11", "unstructured": "Mackay HL, Muller PAJ. Biological relevance of cell-in-cell in cancers. Biochem Soc Trans. 2019;47:725–32.", "volume": "47", "year": "2019" }, { "DOI": "10.1038/cr.2014.138", "author": "Q Sun", "doi-asserted-by": "publisher", "first-page": "1299", "journal-title": "Cell Res", "key": "782_CR12", "unstructured": "Sun Q, Luo T, Ren Y, Florey O, Shirasawa S, Sasazuki T, et al. Competition between human cells by entosis. Cell Res. 2014;24:1299–310.", "volume": "24", "year": "2014" }, { "DOI": "10.1038/s41418-020-00659-x", "doi-asserted-by": "publisher", "key": "782_CR13", "unstructured": "Rizzotto D, Villunger A. P53 clears aneuploid cells by entosis. Cell Death Differ. 2020; https://doi.org/10.1038/s41418-020-00659-x." }, { "DOI": "10.1038/s41418-020-00645-3", "author": "J Liang", "doi-asserted-by": "publisher", "first-page": "799", "journal-title": "Cell Death Differ", "key": "782_CR14", "unstructured": "Liang J, Niu Z, Zhang B, Yu X, Zheng Y, Wang C, et al. p53-dependent elimination of aneuploid mitotic offspring by entosis. Cell Death Differ. 2021;28:799–813.", "volume": "28", "year": "2021" }, { "DOI": "10.3389/fonc.2019.00895", "author": "X Zhang", "doi-asserted-by": "publisher", "first-page": "895", "journal-title": "Front Oncol", "key": "782_CR15", "unstructured": "Zhang X, Niu Z, Qin H, Fan J, Wang M, Zhang B, et al. Subtype-based prognostic analysis of cell-in-cell structures in early breast cancer. Front Oncol. 2019;9:895.", "volume": "9", "year": "2019" }, { "DOI": "10.1038/s41392-020-00346-w", "author": "H Huang", "doi-asserted-by": "publisher", "first-page": "246", "journal-title": "Signal Transduct Target Ther", "key": "782_CR16", "unstructured": "Huang H, He M, Zhang Y, Zhang B, Niu Z, Zheng Y, et al. Identification and validation of heterotypic cell-in-cell structure as an adverse prognostic predictor for young patients of resectable pancreatic ductal adenocarcinoma. Signal Transduct Target Ther. 2020;5:246–8.", "volume": "5", "year": "2020" }, { "DOI": "10.3389/fonc.2020.541878", "author": "J Fan", "doi-asserted-by": "publisher", "first-page": "541878", "journal-title": "Front Oncol", "key": "782_CR17", "unstructured": "Fan J, Fang Q, Yang Y, Cui M, Zhao M, Qi J, et al. Role of heterotypic neutrophil-in-tumor structure in the prognosis of patients with Buccal Mucosa squamous cell carcinoma. Front Oncol. 2020;10:541878.", "volume": "10", "year": "2020" }, { "DOI": "10.1016/j.celrep.2020.108071", "author": "M Wang", "doi-asserted-by": "publisher", "first-page": "108071", "journal-title": "Cell Rep", "key": "782_CR18", "unstructured": "Wang M, Niu Z, Qin H, Ruan B, Zheng Y, Ning X, et al. Mechanical ring interfaces between adherens junction and contractile actomyosin to coordinate entotic cell-in-cell formation. Cell Rep. 2020;32:108071.", "volume": "32", "year": "2020" }, { "DOI": "10.1038/cr.2014.137", "author": "Q Sun", "doi-asserted-by": "publisher", "first-page": "1288", "journal-title": "Cell Res", "key": "782_CR19", "unstructured": "Sun Q, Cibas ES, Huang H, Hodgson L, Overholtzer M. Induction of entosis by epithelial cadherin expression. Cell Res. 2014;24:1288–98.", "volume": "24", "year": "2014" }, { "DOI": "10.1093/jmcb/mjab015.", "doi-asserted-by": "publisher", "key": "782_CR20", "unstructured": "Niu Z, He M, Sun Q. Molecular mechanisms underlying cell-in-cell formation: core machineries and beyond. J Mol Cell Biol. 2021; https://doi.org/10.1093/jmcb/mjab015." }, { "DOI": "10.3389/fonc.2019.01444", "author": "B Ruan", "doi-asserted-by": "publisher", "first-page": "1444", "journal-title": "Front Oncol", "key": "782_CR21", "unstructured": "Ruan B, Niu Z, Jiang X, Li Z, Tai Y, Huang H, et al. High frequency of cell-in-cell formation in heterogeneous human breast cancer tissue in a patient with poor prognosis: a case report and literature review. Front Oncol. 2019;9:1444.", "volume": "9", "year": "2019" }, { "DOI": "10.18632/oncotarget.4275", "author": "H Huang", "doi-asserted-by": "publisher", "first-page": "20278", "journal-title": "Oncotarget", "key": "782_CR22", "unstructured": "Huang H, Chen A, Wang T, Wang M, Ning X, He M, et al. Detecting cell-in-cell structures in human tumor samples by E-cadherin/CD68/CD45 triple staining. Oncotarget. 2015;6:20278–87.", "volume": "6", "year": "2015" }, { "DOI": "10.1038/s41419-021-03396-2", "author": "Y Su", "doi-asserted-by": "publisher", "first-page": "119", "journal-title": "Cell Death Dis", "key": "782_CR23", "unstructured": "Su Y, Ren H, Tang M, Zheng Y, Zhang B, Wang C, et al. Role and dynamics of vacuolar pH during cell-in-cell mediated death. Cell Death Dis. 2021;12:119.", "volume": "12", "year": "2021" }, { "DOI": "10.1038/s41568-018-0073-9", "author": "S Fais", "doi-asserted-by": "publisher", "first-page": "758", "journal-title": "Nat Rev Cancer", "key": "782_CR24", "unstructured": "Fais S, Overholtzer M. Cell-in-cell phenomena in cancer. Nat Rev Cancer. 2018;18:758–66.", "volume": "18", "year": "2018" }, { "DOI": "10.1038/cddis.2013.352", "author": "S Wang", "doi-asserted-by": "publisher", "first-page": "e856", "journal-title": "Cell Death Dis", "key": "782_CR25", "unstructured": "Wang S, He MF, Chen YH, Wang MY, Yu XM, Bai J, et al. Rapid reuptake of granzyme B leads to emperitosis: an apoptotic cell-in-cell death of immune killer cells inside tumor cells. Cell Death Dis. 2013;4:e856.", "volume": "4", "year": "2013" }, { "key": "782_CR26", "unstructured": "Luo W, Yu H, Gou J, Li X, Sun Y, Li J, et al. Clinical pathology of critical patient with novel coronavirus pneumonia (COVID-19). Preprint at https://www.preprints.org/manuscript/202002.0407/v1." }, { "DOI": "10.1016/s2213-2600(20)30076-x", "doi-asserted-by": "publisher", "key": "782_CR27", "unstructured": "Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020; https://doi.org/10.1016/s2213-2600(20)30076-x." }, { "DOI": "10.1101/2020.04.06.20050575:2020.04.06.20050575", "doi-asserted-by": "publisher", "key": "782_CR28", "unstructured": "Fox SE, Akmatbekov A, Harbert JL, Li G, Brown JQ, Vander Heide RS. Pulmonary and cardiac pathology in Covid-19: the first autopsy series from New Orleans. medRxiv. 2020; https://doi.org/10.1101/2020.04.06.20050575:2020.04.06.20050575." }, { "author": "L Zhou", "first-page": "1", "journal-title": "TMPRSS2 Furin Proteases iScience", "key": "782_CR29", "unstructured": "Zhou L, Niu Z, Jiang X, Zhang Z, Zheng Y, Wang Z, et al. SARS-CoV-2 targets by the pscRNA profiling of ACE2. TMPRSS2 Furin Proteases iScience. 2020;23:1–15.", "volume": "23", "year": "2020" }, { "DOI": "10.1146/annurev-biophys-070317-033018", "author": "S Boonstra", "doi-asserted-by": "publisher", "first-page": "153", "journal-title": "Annu Rev Biophys", "key": "782_CR30", "unstructured": "Boonstra S, Blijleven JS, Roos WH, Onck PR, van der Giessen E, van Oijen AM. Hemagglutinin-mediated membrane fusion: a biophysical perspective. Annu Rev Biophys. 2018;47:153–73.", "volume": "47", "year": "2018" }, { "DOI": "10.1038/s41591-020-0820-9", "author": "KG Andersen", "doi-asserted-by": "publisher", "first-page": "450", "journal-title": "Nat Med", "key": "782_CR31", "unstructured": "Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26:450–2.", "volume": "26", "year": "2020" }, { "DOI": "10.1038/d41586-020-01599-9", "author": "H Ledford", "doi-asserted-by": "publisher", "first-page": "18", "journal-title": "Nature", "key": "782_CR32", "unstructured": "Ledford H. Safety fears over drug hyped to treat the coronavirus spark global confusion. Nature 2020;582:18–9.", "volume": "582", "year": "2020" }, { "DOI": "10.1038/s41421-020-0156-0", "author": "J Liu", "doi-asserted-by": "publisher", "first-page": "16", "journal-title": "Cell Disco", "key": "782_CR33", "unstructured": "Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Disco. 2020;6:16.", "volume": "6", "year": "2020" }, { "DOI": "10.1038/s41422-020-0282-0", "author": "M Wang", "doi-asserted-by": "publisher", "first-page": "269", "journal-title": "Cell Res", "key": "782_CR34", "unstructured": "Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30:269–71.", "volume": "30", "year": "2020" }, { "DOI": "10.1016/j.ijantimicag.2020.105960", "author": "J Fantini", "doi-asserted-by": "publisher", "first-page": "105960", "journal-title": "Int J Antimicrob Agents", "key": "782_CR35", "unstructured": "Fantini J, Di Scala C, Chahinian H, Yahi N. Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int J Antimicrob Agents. 2020;55:105960.", "volume": "55", "year": "2020" }, { "DOI": "10.1080/07391102.2020.1775703:1-11", "doi-asserted-by": "publisher", "key": "782_CR36", "unstructured": "Amin M, Abbas G. Docking study of Chloroquine and Hydroxychloroquine interaction with SARS-CoV-2 spike glycoprotein-An in silico insight into the comparative efficacy of repurposing antiviral drugs. J Biomol Struct Dyn. 2020; https://doi.org/10.1080/07391102.2020.1775703:1-11." }, { "DOI": "10.1038/s41586-021-03491-6", "doi-asserted-by": "publisher", "key": "782_CR37", "unstructured": "Braga L, Ali H, Secco I, Chiavacci E, Neves G, Goldhill D, et al. Drugs that inhibit TMEM16 proteins block SARS-CoV-2 Spike-induced syncytia. Nature. 2021; https://doi.org/10.1038/s41586-021-03491-6." }, { "DOI": "10.3389/fcell.2020.00001", "author": "C Wang", "doi-asserted-by": "publisher", "first-page": "1", "journal-title": "Front Cell Dev Biol", "key": "782_CR38", "unstructured": "Wang C, Chen A, Ruan B, Niu Z, Su Y, Qin H, et al. PCDH7 inhibits the formation of homotypic cell-in-cell structure. Front Cell Dev Biol. 2020;8:1–12.", "volume": "8", "year": "2020" } ], "reference-count": 38, "references-count": 38, "relation": { "has-preprint": [ { "asserted-by": "object", "id": "10.21203/rs.3.rs-353991/v1", "id-type": "doi" } ] }, "resource": { "primary": { "URL": "https://www.nature.com/articles/s41418-021-00782-3" } }, "score": 1, "short-title": [], "source": "Crossref", "subject": [], "subtitle": [], "title": "SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte elimination", "type": "journal-article", "update-policy": "http://dx.doi.org/10.1007/springer_crossmark_policy", "volume": "28" }
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit