Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19hcq.org COVID-19 treatment researchHCQHCQ (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Viral and Host Transcriptomes in SARS-CoV-2-Infected Human Lung Cells

Wang et al., Journal of Virology, doi:10.1128/jvi.00600-21
Aug 2021  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
HCQ for COVID-19
1st treatment shown to reduce risk in March 2020, now with p < 0.00000000001 from 419 studies, recognized in 46 countries.
No treatment is 100% effective. Protocols combine treatments.
5,200+ studies for 112 treatments. c19hcq.org
In Vitro study showing that additional treatment with high levels of cholesterol enhanced viral replication, and that inhibition of host cell cholesterol metabolism promotes SARS-CoV-2 infection. Using RNA-sequencing, authors find SARS-CoV-2 infection downregulates cholesterol synthesis pathways in human lung cells. The study also highlights valine metabolism, TNF signaling and early cytokine responses, but the links between those pathways and infection severity were less clear. Overall, the data suggest host cholesterol metabolism influences SARS-CoV-2 infection, and its modulation could affect COVID-19 severity.
38 preclinical studies support the efficacy of HCQ for COVID-19:
Wang et al., 25 Aug 2021, peer-reviewed, 12 authors. Contact: yuwei0901@outlook.com.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperHCQAll
Viral and Host Transcriptomes in SARS-CoV-2-Infected Human Lung Cells
Xuefeng Wang, Yudong Zhao, Feihu Yan, Tiecheng Wang, Weiyang Sun, Na Feng, Wenqi Wang, Hongmei Wang, Hongbin He, Songtao Yang, Xianzhu Xia, Yuwei Gao
doi:10.1128/JVI
Coronaviruses are commonly characterized by a unique discontinuous RNA transcriptional synthesis strategy guided by transcription-regulating sequences (TRSs). However, the details of RNA synthesis in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have not been fully elucidated. Here, we present a timescaled, gene-comparable transcriptome of SARS-CoV-2, demonstrating that ACGAAC functions as a core TRS guiding the discontinuous RNA synthesis of SARS-CoV-2 from a holistic perspective. During infection, viral transcription, rather than genome replication, dominates all viral RNA synthesis activities. The most highly expressed viral gene is the nucleocapsid gene, followed by ORF7 and ORF3 genes, while the envelope gene shows the lowest expression. Host transcription dysregulation keeps exacerbating after viral RNA synthesis reaches a maximum. The most enriched host pathways are metabolism related. Two of them (cholesterol and valine metabolism) affect viral replication in reverse. Furthermore, the activation of numerous cytokines emerges before large-scale viral RNA synthesis. IMPORTANCE SARS-CoV-2 is responsible for the current severe global health emergency that began at the end of 2019. Although the universal transcriptional strategies of coronaviruses are preliminarily understood, the details of RNA synthesis, especially the timematched transcription level of each SARS-CoV-2 gene and the principles of subgenomic mRNA synthesis, are not clear. The coterminal subgenomic mRNAs of SARS-CoV-2 present obstacles in identifying the expression of most genes by PCR-based methods, which are exacerbated by the lack of related antibodies. Moreover, SARS-CoV-2-related metabolic imbalance and cytokine storm are receiving increasing attention from both clinical and mechanistic perspectives. Our transcriptomic research provides information on both viral RNA synthesis and host responses, in which the transcription-regulating sequences and transcription levels of viral genes are demonstrated, and the metabolic dysregulation and cytokine levels identified at the host cellular level support the development of novel medical treatment strategies.
were selected and referred to as short "query reads" (see Fig. S1 ). Their first nt were located one by one downstream at a specific region of the 59 UTR. By querying the combined read pool containing all viral sequences, all sequences of 30 nt in length whose 59 15-nt sequences were identical to the query reads were returned and their numbers were counted. The 15-nt sequences downstream of the corresponding query reads were referred to as their "return reads." Located around the possible TRS, the return reads could be either manually aligned continuously to gRNAs or aligned discontinuously to sgmRNAs with the 59 partial sequence homologous to the leader UTR (upstream of the leader TRS) and the 39 sequence homologous to various ORFs (downstream of the body TRS). When a site could be regarded as either 59 continuous (continuous to upstream query reads) or 39 continuous (continuous to downstream ORFs), it was designated 59 continuous, as we intended to identify the probable leader TRS as long as possible. In parallel, two additional types of 15-nt query reads with sequences homologous to the beginning of the ORFs were used: the first type started at the body TRS (6 nt) and ended at 19 nt of the downstream ORF (referred to as "in-TRS reads"), and the second type was homologous to 11 to 115 nt of the ORFs adjacent to the downstream body TRS (referred to as "after-TRS reads"). For each known ORF, an in-TRS read and an after-TRS read were..
References
Baker, Reddy, Modulation of life and death by the TNF receptor superfamily, Oncogene, doi:10.1038/sj.onc.1202568
Blanco-Melo, Nilsson-Payant, Liu, Uhl, Hoagland et al., Imbalanced host response to SARS-CoV-2 drives development of COVID-19, Cell, doi:10.1016/j.cell.2020.04.026
Bojkova, Klann, Koch, Widera, Krause et al., Proteomics of SARS-CoV-2-infected host cells reveals therapy targets, Nature, doi:10.1038/s41586-020-2332-7
Chang, Guarente, SIRT1 and other sirtuins in metabolism, Trends Endocrinol Metab, doi:10.1016/j.tem.2013.12.001
Chua, Lukassen, Trump, Hennig, Wendisch et al., COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis, Nat Biotechnol, doi:10.1038/s41587-020-0602-4
Daniloski, Jordan, Wessels, Hoagland, Kasela et al., Identification of required host factors for SARS-CoV-2 infection in human cells, Cell, doi:10.1016/j.cell.2020.10.030
Hachim, Kavian, Cohen, Chin, Chu et al., ORF8 and ORF3b antibodies are accurate serological markers of early and late SARS-CoV-2 infection, Nat Immunol, doi:10.1038/s41590-020-0773-7
Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell, doi:10.1016/j.cell.2020.02.052
Kim, Lee, Yang, Kim, Kim et al., The Architecture of SARS-CoV-2 transcriptome, Cell, doi:10.1016/j.cell.2020.04.011
Lee, Cao, Mostoslavsky, Lombard, Liu et al., A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy, Proc Natl Acad Sci U S A, doi:10.1073/pnas.0712145105
Lee, Park, Jeong, Ahn, Choi et al., Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19, Sci Immunol, doi:10.1126/sciimmunol.abd1554
Li, Zhang, Blander, Tse, Krieger et al., SIRT1 deacetylates and positively regulates the nuclear receptor LXR, Mol Cell, doi:10.1016/j.molcel.2007.07.032
Liao, Liu, Yuan, Wen, Xu et al., Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19, Nat Med, doi:10.1038/s41591-020-0901-9
Livak, Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 22DDCT method, Methods, doi:10.1006/meth.2001.1262
Medler, Wajant, Tumor necrosis factor receptor-2 (TNFR2): an overview of an emerging drug target, Expert Opin Ther Targets, doi:10.1080/14728222.2019.1586886
Miyazaki, Ichiki, Hashimoto, Inanaga, Imayama et al., SIRT1, a longevity gene, downregulates angiotensin II type 1 receptor expression in vascular smooth muscle cells, Arterioscler Thromb Vasc Biol, doi:10.1161/ATVBAHA.108.166991
Neinast, Murashige, Arany, Branched chain amino acids, Annu Rev Physiol, doi:10.1146/annurev-physiol-020518-114455
Radenkovic, Chawla, Pirro, Sahebkar, Banach, Cholesterol in relation to COVID-19: should we care about it?, J Clin Med, doi:10.3390/jcm9061909
Salomon, Hoffmann, Webster, Inhibition of the cytokine response does not protect against lethal H5N1 influenza infection, Proc Natl Acad Sci U S A, doi:10.1073/pnas.0705289104
Snijder, Bredenbeek, Dobbe, Thiel, Ziebuhr et al., Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage, J Mol Biol, doi:10.1016/S0022-2836(03)00865-9
Snijder, Decroly, Ziebuhr, Chapter three -the nonstructural proteins directing coronavirus RNA synthesis and processing
Sola, Almazán, Zúñiga, Enjuanes, Continuous and discontinuous RNA synthesis in coronaviruses, Annu Rev Virol, doi:10.1146/annurev-virology-100114-055218
Storz, Forkhead homeobox type O transcription factors in the responses to oxidative stress, Antioxid Redox Signal, doi:10.1089/ars.2010.3405
Stukalov, Girault, Grass, Bergant, Karayel et al., Multi-level proteomics reveals host-perturbation strategies of SARS-CoV-2 and SARS-CoV, doi:10.1101/2020.06.17.156455:2020.06.17.156455
Taiaroa, Rawlinson, Featherstone, Pitt, Caly et al., Direct RNA sequencing and early evolution of SARS-CoV-2, doi:10.1101/2020.03.05.976167:2020.03.05.976167
Thiel, Ivanov, Putics, Hertzig, Schelle et al., Mechanisms and enzymes involved in SARS coronavirus genome expression, J Gen Virol, doi:10.1099/vir.0.19424-0
Wang, Hu, Hu, Zhu, Liu et al., Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China, JAMA, doi:10.1001/jama.2020.1585
Wang, Simoneau, Kulsuptrakul, Bouhaddou, Travisano et al., Genetic screens identify host factors for SARS-CoV-2 and common cold coronaviruses, Cell, doi:10.1016/j.cell.2020.12.004
Wu, Zhao, Yu, Chen, Song et al., A new coronavirus associated with human respiratory disease in China, Nature, doi:10.1038/s41586-020-2008-3
Xiong, Liu, Cao, Wang, Guo et al., Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients, Emerg Microbes Infect, doi:10.1080/22221751.2020.1747363
Yao, Irwin, Zhao, Nilsen, Hamilton et al., Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease, Proc Natl Acad Sci U S A, doi:10.1073/pnas.0903563106
Zhang, Li, Cruz, Kone, Sirtuin 1 functionally and physically interacts with disruptor of telomeric silencing-1 to regulate alpha-ENaC transcription in collecting duct, J Biol Chem, doi:10.1074/jbc.M109.020073
{ 'indexed': {'date-parts': [[2024, 2, 21]], 'date-time': '2024-02-21T11:09:16Z', 'timestamp': 1708513756036}, 'reference-count': 33, 'publisher': 'American Society for Microbiology', 'issue': '18', 'license': [ { 'start': { 'date-parts': [[2021, 8, 25]], 'date-time': '2021-08-25T00:00:00Z', 'timestamp': 1629849600000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://doi.org/10.1128/ASMCopyrightv2'}, { 'start': { 'date-parts': [[2021, 8, 25]], 'date-time': '2021-08-25T00:00:00Z', 'timestamp': 1629849600000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://journals.asm.org/non-commercial-tdm-license'}], 'funder': [ { 'DOI': '10.13039/501100012166', 'name': 'National Key Research and Development Program of China', 'doi-asserted-by': 'publisher', 'award': ['2016YFD0500203']}], 'content-domain': {'domain': ['journals.asm.org'], 'crossmark-restriction': True}, 'published-print': {'date-parts': [[2021, 8, 25]]}, 'abstract': '<jats:p>SARS-CoV-2 is responsible for the current severe global health emergency that began ' 'at the end of 2019. Although the universal transcriptional strategies of coronaviruses are ' 'preliminarily understood, the details of RNA synthesis, especially the time-matched ' 'transcription level of each SARS-CoV-2 gene and the principles of subgenomic mRNA synthesis, ' 'are not clear.</jats:p>', 'DOI': '10.1128/jvi.00600-21', 'type': 'journal-article', 'created': {'date-parts': [[2021, 6, 13]], 'date-time': '2021-06-13T23:05:56Z', 'timestamp': 1623625556000}, 'update-policy': 'http://dx.doi.org/10.1128/asmj-crossmark-policy-page', 'source': 'Crossref', 'is-referenced-by-count': 8, 'title': 'Viral and Host Transcriptomes in SARS-CoV-2-Infected Human Lung Cells', 'prefix': '10.1128', 'volume': '95', 'author': [ { 'ORCID': 'http://orcid.org/0000-0002-3974-3421', 'authenticated-orcid': True, 'given': 'Xuefeng', 'family': 'Wang', 'sequence': 'first', 'affiliation': [ { 'name': 'Institute of Military Veterinary Medicine, Academy of Military ' 'Medical Sciences, Changchun, People’s Republic of China'}]}, { 'given': 'Yudong', 'family': 'Zhao', 'sequence': 'additional', 'affiliation': [ { 'name': 'Institute of Military Veterinary Medicine, Academy of Military ' 'Medical Sciences, Changchun, People’s Republic of China'}, { 'name': 'School of Life Sciences, Northeast Normal University, Changchun, ' 'People’s Republic of China'}]}, { 'given': 'Feihu', 'family': 'Yan', 'sequence': 'additional', 'affiliation': [ { 'name': 'Institute of Military Veterinary Medicine, Academy of Military ' 'Medical Sciences, Changchun, People’s Republic of China'}]}, { 'given': 'Tiecheng', 'family': 'Wang', 'sequence': 'additional', 'affiliation': [ { 'name': 'Institute of Military Veterinary Medicine, Academy of Military ' 'Medical Sciences, Changchun, People’s Republic of China'}]}, { 'given': 'Weiyang', 'family': 'Sun', 'sequence': 'additional', 'affiliation': [ { 'name': 'Institute of Military Veterinary Medicine, Academy of Military ' 'Medical Sciences, Changchun, People’s Republic of China'}]}, { 'given': 'Na', 'family': 'Feng', 'sequence': 'additional', 'affiliation': [ { 'name': 'Institute of Military Veterinary Medicine, Academy of Military ' 'Medical Sciences, Changchun, People’s Republic of China'}]}, { 'given': 'Wenqi', 'family': 'Wang', 'sequence': 'additional', 'affiliation': [ { 'name': 'Institute of Military Veterinary Medicine, Academy of Military ' 'Medical Sciences, Changchun, People’s Republic of China'}, { 'name': 'Key Laboratory of Animal Resistant Biology of Shandong, College ' 'of Life Sciences, Shandong Normal University, Jinan, People’s ' 'Republic of China'}]}, { 'given': 'Hongmei', 'family': 'Wang', 'sequence': 'additional', 'affiliation': [ { 'name': 'Key Laboratory of Animal Resistant Biology of Shandong, College ' 'of Life Sciences, Shandong Normal University, Jinan, People’s ' 'Republic of China'}]}, { 'ORCID': 'http://orcid.org/0000-0002-7438-0638', 'authenticated-orcid': True, 'given': 'Hongbin', 'family': 'He', 'sequence': 'additional', 'affiliation': [ { 'name': 'Key Laboratory of Animal Resistant Biology of Shandong, College ' 'of Life Sciences, Shandong Normal University, Jinan, People’s ' 'Republic of China'}]}, { 'given': 'Songtao', 'family': 'Yang', 'sequence': 'additional', 'affiliation': [ { 'name': 'Institute of Military Veterinary Medicine, Academy of Military ' 'Medical Sciences, Changchun, People’s Republic of China'}]}, { 'given': 'Xianzhu', 'family': 'Xia', 'sequence': 'additional', 'affiliation': [ { 'name': 'Institute of Military Veterinary Medicine, Academy of Military ' 'Medical Sciences, Changchun, People’s Republic of China'}]}, { 'given': 'Yuwei', 'family': 'Gao', 'sequence': 'additional', 'affiliation': [ { 'name': 'Institute of Military Veterinary Medicine, Academy of Military ' 'Medical Sciences, Changchun, People’s Republic of China'}]}], 'member': '235', 'reference': [ { 'key': 'e_1_3_3_2_2', 'unstructured': 'World Health Organization. 2020. WHO coronavirus disease (COVID-19) ' 'dashboard. https://covid19.who.int/.'}, {'key': 'e_1_3_3_3_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41586-020-2008-3'}, { 'key': 'e_1_3_3_4_2', 'first-page': '59', 'volume-title': 'Advances in virus research', 'author': 'Snijder EJ', 'year': '2016', 'unstructured': 'Snijder EJ, Decroly E, Ziebuhr J. 2016. Chapter three - the ' 'nonstructural proteins directing coronavirus RNA synthesis and ' 'processing, p 59–126. In Ziebuhr J (ed), Advances in virus research, vol ' '96. Academic Press.'}, { 'key': 'e_1_3_3_5_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0022-2836(03)00865-9'}, { 'key': 'e_1_3_3_6_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1146/annurev-virology-100114-055218'}, {'key': 'e_1_3_3_7_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cell.2020.04.011'}, {'key': 'e_1_3_3_8_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1099/vir.0.19424-0'}, { 'key': 'e_1_3_3_9_2', 'doi-asserted-by': 'crossref', 'unstructured': 'Taiaroa G Rawlinson D Featherstone L Pitt M Caly L Druce J Purcell D ' 'Harty L Tran T Roberts J Scott N Catton M Williamson D Coin L Duchene S. ' '2020. Direct RNA sequencing and early evolution of SARS-CoV-2. bioRxiv ' '10.1101/2020.03.05.976167:2020.03.05.976167.', 'DOI': '10.1101/2020.03.05.976167'}, {'key': 'e_1_3_3_10_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41587-020-0602-4'}, { 'key': 'e_1_3_3_11_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1080/22221751.2020.1747363'}, { 'key': 'e_1_3_3_12_2', 'doi-asserted-by': 'crossref', 'unstructured': 'Stukalov A Girault V Grass V Bergant V Karayel O Urban C Haas DA Huang Y ' 'Oubraham L Wang A Hamad SM Piras A Tanzer M Hansen FM Enghleitner T ' 'Reinecke M Lavacca TM Ehmann R Wölfel R Jores J Kuster B Protzer U RR ' 'Ziebuhr J Thiel V Scaturro P Mann M Pichlmair A. 2020. Multi-level ' 'proteomics reveals host-perturbation strategies of SARS-CoV-2 and ' 'SARS-CoV. bioRxiv 10.1101/2020.06.17.156455:2020.06.17.156455.', 'DOI': '10.1101/2020.06.17.156455'}, {'key': 'e_1_3_3_13_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.0903563106'}, {'key': 'e_1_3_3_14_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41586-020-2332-7'}, {'key': 'e_1_3_3_15_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.tem.2013.12.001'}, { 'key': 'e_1_3_3_16_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.molcel.2007.07.032'}, {'key': 'e_1_3_3_17_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1074/jbc.M109.020073'}, {'key': 'e_1_3_3_18_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1089/ars.2010.3405'}, {'key': 'e_1_3_3_19_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.0712145105'}, {'key': 'e_1_3_3_20_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cell.2020.02.052'}, {'key': 'e_1_3_3_21_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1001/jama.2020.1585'}, {'key': 'e_1_3_3_22_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1161/ATVBAHA.108.166991'}, { 'key': 'e_1_3_3_23_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1146/annurev-physiol-020518-114455'}, {'key': 'e_1_3_3_24_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/sj.onc.1202568'}, {'key': 'e_1_3_3_25_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41591-020-0901-9'}, {'key': 'e_1_3_3_26_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41590-020-0773-7'}, {'key': 'e_1_3_3_27_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cell.2020.12.004'}, {'key': 'e_1_3_3_28_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cell.2020.10.030'}, {'key': 'e_1_3_3_29_2', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/jcm9061909'}, { 'key': 'e_1_3_3_30_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1080/14728222.2019.1586886'}, {'key': 'e_1_3_3_31_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/sciimmunol.abd1554'}, {'key': 'e_1_3_3_32_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cell.2020.04.026'}, {'key': 'e_1_3_3_33_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.0705289104'}, {'key': 'e_1_3_3_34_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1006/meth.2001.1262'}], 'container-title': 'Journal of Virology', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://journals.asm.org/doi/pdf/10.1128/JVI.00600-21', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://journals.asm.org/doi/pdf/10.1128/JVI.00600-21', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2022, 3, 5]], 'date-time': '2022-03-05T16:28:34Z', 'timestamp': 1646497714000}, 'score': 1, 'resource': {'primary': {'URL': 'https://journals.asm.org/doi/10.1128/JVI.00600-21'}}, 'subtitle': [], 'editor': [{'given': 'Kanta', 'family': 'Subbarao', 'sequence': 'additional', 'affiliation': []}], 'short-title': [], 'issued': {'date-parts': [[2021, 8, 25]]}, 'references-count': 33, 'journal-issue': {'issue': '18', 'published-print': {'date-parts': [[2021, 8, 25]]}}, 'alternative-id': ['10.1128/JVI.00600-21'], 'URL': 'http://dx.doi.org/10.1128/jvi.00600-21', 'relation': {}, 'ISSN': ['0022-538X', '1098-5514'], 'subject': ['Virology', 'Insect Science', 'Immunology', 'Microbiology'], 'container-title-short': 'J Virol', 'published': {'date-parts': [[2021, 8, 25]]}, 'assertion': [ { 'value': '2021-04-07', 'order': 0, 'name': 'received', 'label': 'Received', 'group': {'name': 'publication_history', 'label': 'Publication History'}}, { 'value': '2021-06-02', 'order': 1, 'name': 'accepted', 'label': 'Accepted', 'group': {'name': 'publication_history', 'label': 'Publication History'}}, { 'value': '2021-08-25', 'order': 2, 'name': 'published', 'label': 'Published', 'group': {'name': 'publication_history', 'label': 'Publication History'}}]}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit