Zinc(II)—The Overlooked Éminence Grise of Chloroquine’s Fight against COVID-19?
Aleksandra Hecel, Małgorzata Ostrowska, Kamila Stokowa-Sołtys, Joanna Wątły, Dorota Dudek, Adriana Miller, Sławomir Potocki, Agnieszka Matera-Witkiewicz, Alicia Dominguez-Martin, Henryk Kozłowski, Magdalena Rowińska-Żyrek
Pharmaceuticals, doi:10.3390/ph13090228
Zn(II) is an inhibitor of SARS-CoV-2 s RNA-dependent RNA polymerase, and chloroquine and hydroxychloroquine are Zn(II) ionophores-this statement gives a curious mind a lot to think about. We show results of the first clinical trials on chloroquine (CQ) and hydroxychloroquine (HCQ) in the treatment of COVID-19, as well as earlier reports on the anticoronaviral properties of these two compounds and of Zn(II) itself. Other FDA-approved Zn(II) ionophores are given a decent amount of attention and are thought of as possible COVID-19 therapeutics.
References
Adlard, Cherny, Finkelstein, Gautier, Robb et al., Rapid Restoration of Cognition in Alzheimer's Transgenic Mice with 8-Hydroxy Quinoline Analogs Is Associated with Decreased Interstitial Aβ, Neuron,
doi:10.1016/j.neuron.2008.06.018
Alfonso, Quesada, Biological activity of synthetic ionophores: Ion transporters as prospective drugs?, Chem. Sci,
doi:10.1039/c3sc50882j
Atala, Lanza, None
Bachmetov, Gal-Tanamy, Shapira, Vorobeychik, Giterman-Galam et al., Suppression of hepatitis C virus by the flavonoid quercetin is mediated by inhibition of NS3 protease activity, J. Viral. Hepat,
doi:10.1111/j.1365-2893.2011.01507.x
Bessho, Matsubara, Kubota, Kuwakado, Hirota et al., Pyrrolidine dithiocarbamate, a potent inhibitor of nuclear factor κB (NF-κB) activation, prevents apoptosis in human promyelocytic leukemia HL-60 cells and thymocytes, Biochem. Pharmacol,
doi:10.1016/0006-2952(94)90586-X
Bishop, Examination of potential inhibitors of hepatitis A virus uncoating, Intervirology
Blanchard, Brooks, Ebsworth-Mojica, Didione, Wucher et al., Zinc Pyrithione Improves the Antibacterial Activity of Silver Sulfadiazine Ointment, mSphere,
doi:10.1128/mSphere.00194-16
Brooks, Gardner, Poyser, King, The structure and absolute stereochemistry of zincophorin (antibiotic M144255): A monobasic carboxylic acid ionophore having a remarkable specificity for divalent cations, J. Antibiot,
doi:10.7164/antibiotics.37.1501
Cao, Feng, Jiang, Liu, Ding et al., Synthesis and in vitro antitumor activity of 4(3H)-quinazolinone derivatives with dithiocarbamate side chains, Bioorg. Med. Chem. Lett,
doi:10.1016/j.bmcl.2005.01.083
Carlucci, Ahuja, Petrilli, Rajagopalan, Jones et al., Hydroxychloroquine and azithromycin plus zinc vs. hydroxychloroquine and azithromycin alone: Outcomes in hospitalized COVID-19 patients, medRixv,
doi:10.1101/2020.05.02.20080036
Cheng, Sun, Guo, Huang, Sun et al., Inhibition of hepatitis B virus replication by quercetin in human hepatoma cell lines, Virol. Sin,
doi:10.1007/s12250-015-3584-5
Chiow, Phoon, Putti, Tan, Chow, Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection, Asian Pac. J. Trop. Med,
doi:10.1016/j.apjtm.2015.12.002
Clinicaltrials, A Study of Hydroxychloroquine and Zinc in the Prevention of COVID-19 Infection in Military Healthcare Workers (COVID-Milit)
Clinicaltrials, A Study of Quintuple Therapy to Treat COVID-19 Infection
Clinicaltrials, Early Intervention in COVID-19: Favipiravir Verses Standard Care (PIONEER
Clinicaltrials, Gov, Anti-inflammatory/Antioxidant Oral Nutrition Supplementation in COVID-19
Clinicaltrials, Gov, Clearing the Fog: Is Hydroxychloroquine Effective in Reducing COVID-19 Progression
Clinicaltrials, Gov, Efficacy of Subcutaneous Ivermectin with or without Zinc and Nigella Sativa in COVID-19 Patients (SINZ-COVID-PK
Clinicaltrials, Gov, Hydroxychloroquine and Zinc with Either Azithromycin or Doxycycline for Treatment of COVID-19 in Outpatient Setting
Clinicaltrials, Gov, Impact of Zinc and Vitamin D3 Supplementation on the Survival of Aged Patients Infected With COVID-19 (ZnD3-CoVici
Clinicaltrials, Gov, Proflaxis Using Hydroxychloroquine Plus Vitamins-Zinc During COVID-19 Pandemia
Clinicaltrials, Gov, The Study of Quadruple Therapy Zinc, Quercetin, Bromelain and Vitamin C on the Clinical Outcomes of Patients Infected with COVID-19
Clinicaltrials, Gov, Zinc with Chloroquine/Hydroxychloroquine in Treatment of COVID-19
Clinicaltrials, International ALLIANCE Study of Therapies to Prevent Progression of COVID-19
Clinicaltrials, New Antiviral Drugs for Treatment of COVID-19
Clinicaltrials, Vitamin, Vitamin, A Study of Hydroxychloroquine
De Wilde, Jochmans, Posthuma, Zevenhoven-Dobbe, Van Nieuwkoop et al., Screening of an FDA-Approved Compound Library Identifies Four Small-Molecule Inhibitors of Middle East Respiratory Syndrome Coronavirus Replication in Cell Culture, Antimicrob. Agents Chemother,
doi:10.1128/AAC.03011-14
Delogu, De Lamballerie, Chikungunya disease and chloroquine treatment, J. Med. Virol,
doi:10.1002/jmv.22019
Delvecchio, Higa, Pezzuto, Valadão, Garcez et al., Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models, Viruses,
doi:10.3390/v8120322
Ding, Lind, Metal ionophores: An emerging class of anticancer drugs, IUBMB Life,
doi:10.1002/iub.253
Dowall, Bosworth, Watson, Bewley, Taylor et al., Chloroquine inhibited Ebola virus replication in vitro but failed to protect against infection and disease in the in vivo guinea pig model, J. Gen. Virol
Farias, Machado, Da Fonseca, Chloroquine Inhibits Dengue Virus Type 2 Replication in Vero Cells but Not in C6/36 Cells, Sci. World J,
doi:10.1155/2013/282734
Farias, Machado, De Almeida Junior, De Aquino, Da Fonseca, Chloroquine interferes with dengue-2 virus replication in U937 cells, Microbiol. Immunol,
doi:10.1111/1348-0421.12154
Farias, Machado, Muniz, Imbeloni, Da Fonseca, Antiviral Activity of Chloroquine Against Dengue Virus Type 2 Replication in Aotus Monkeys, Viral Immunol
Feng, Li, Guan, Franklin, Costello, Effect of zinc on prostatic tumorigenicity in nude mice, Ann. N. Y. Acad. Sci,
doi:10.1196/annals.1299.056
Ferrari, Wright-Minogue, Fang, Baroudy, Lau et al., Characterization of Soluble Hepatitis C Virus RNA-Dependent RNA Polymerase Expressed in Escherichia coli, JVI
Ferraris, Moroso, Pernet, Emonet, Ferrier Rembert et al., Evaluation of Crimean-Congo hemorrhagic fever virus in vitro inhibition by chloroquine and chlorpromazine, two FDA approved molecules, Antivir. Res,
doi:10.1016/j.antiviral.2015.03.005
Freiberg, Worthy, Lee, Holbrook, Combined chloroquine and ribavirin treatment does not prevent death in a hamster model of Nipah and Hendra virus infection, Arch. Virol
Gao, Tian, Yang, Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies, Biosci. Trends,
doi:10.5582/bst.2020.01047
Gao, Yan, Huang, Liu, Cao et al., SARS-CoV-2 RNA-Dependent RNA Polymerase in Complex with Cofactors in Reduced Condition
Gao, Yan, Huang, Liu, Zhao et al., Structure of the RNA-dependent RNA polymerase from COVID-19 virus, Science,
doi:10.1126/science.abb7498
Gaspari, Banerjee, Malachowski, Muller, Prendergast et al., Structure-activity study of brassinin derivatives as indoleamine 2,3-dioxygenase inhibitors, J. Med. Chem,
doi:10.1021/jm0508888
Gaur, Vázquez-Salgado, Duran-Camacho, Dominguez-Martinez, Benjamín-Rivera et al., Iron and Copper Intracellular Chelation as an Anticancer Drug Strategy, Inorganics,
doi:10.3390/inorganics6040126
Gautret, Lagier, Parola, Van Hoang, Meddeb et al., Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial, Int. J. Antimicrob. Agents,
doi:10.1016/j.ijantimicag.2020.105949
Goldman, La Cecil, Goldman's Cecil Medicine
Gräfe, Schade, Roth, Radics, Incze et al., Griseochelin, a novel carboxylic acid antibiotic from Streptomyces griseus, J. Antibiot,
doi:10.7164/antibiotics.37.836
Gräfe, Tonew, Schade, Reinhardt, Hartl et al., None, Patent DD
Guo, Zhu, Wang, Chen, Liu, Pyrithione inhibits porcine reproductive and respiratory syndrome virus replication through interfering with NF-κB and heparanase, Vet. Microbiol,
doi:10.1016/j.vetmic.2017.01.033
Han, Chang, Juo, Lee, Yeh et al., Papain-like protease 2 (PLP2) from severe acute respiratory syndrome coronavirus (SARS-CoV): Expression, purification, characterization, and inhibition, Biochemistry,
doi:10.1021/bi0504761
Harbison-Price, Ferguson, Heikal, Taiaroa, Hards et al., Multiple Bactericidal Mechanisms of the Zinc Ionophore PBT2, mSphere,
doi:10.1128/mSphere.00157-20
Harwood, Danielewska-Nikiel, Borzelleca, Flamm, Williams et al., A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties, Food Chem. Toxicol,
doi:10.1016/j.fct.2007.05.015
Huang, Sivaramakrishna, Ludwig, Korte, Böttcher et al., Early steps of the conformational change of influenza virus hemagglutinin to a fusion active state, Biochim. Biophys. Acta Biomembr,
doi:10.1016/S0005-2736(03)00158-5
Huang, Wallqvist, Covell, Anticancer metal compounds in NCI's tumor-screening database: Putative mode of action, Biochem. Pharmacol,
doi:10.1016/j.bcp.2005.01.001
Imbert, Guillemot, Bourhis, Bussetta, Coutard et al., A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus, EMBO J,
doi:10.1038/sj.emboj.7601368
Jiang, Lin, Chen, Inhibition of HIV-1 Tat-mediated transactivation by quinacrine and chloroquine, Biochem. Biophys. Res. Commun,
doi:10.1006/bbrc.1996.1302
Jin, Leveque, Ma, Johnson, Klumpp, Assembly, purification, and pre-steady-state kinetic analysis of active RNA-dependent RNA polymerase elongation complex, J. Biol. Chem,
doi:10.1074/jbc.M111.325530
Johari, Kianmehr, Mustafa, Abubakar, Zandi, Antiviral Activity of Baicalein and Quercetin against the Japanese Encephalitis Virus, Int. J. Mol. Sci,
doi:10.3390/ijms131216785
Katz, Margalith, Inhibition of vaccinia virus maturation by zinc chloride, Antimicrob. Agents Chemother,
doi:10.1128/AAC.19.2.213
Kavlock, Pesticides as Endocrine-Disrupting Chemicals, Methods of Tissue Engineering
Keyaerts, Li, Vijgen, Rysman, Verbeeck et al., Antiviral Activity of Chloroquine against Human Coronavirus OC43 Infection in Newborn Mice, Antimicrob. Agents Chemother,
doi:10.1128/AAC.01509-08
Keyaerts, Vijgen, Maes, Neyts, Van Ranst, In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine, Biochem. Biophys. Res. Commun,
doi:10.1016/j.bbrc.2004.08.085
Khan, Santhosh, Tiwari, Lakshmana Rao, Parida, Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against Chikungunya virus in vero cells, J. Med. Virol,
doi:10.1002/jmv.21663
Kim, Kim, Moon, Chung, Hsu et al., a zinc ionophore, inhibits NF-kappaB activation, Biochem. Biophys. Res. Commun,
doi:10.1006/bbrc.1999.0814
Kim, Kim, Xu, Hsu, Ahn, Pyrrolidine Dithiocarbamate Induces Bovine Cerebral Endothelial Cell Death by Increasing the Intracellular Zinc Level, J. Neurochem
Knight, Hartung, -Hydroxypyridine-2(1H)-thione
Kono, Tatsumi, Imai, Saito, Kuriyama et al., Inhibition of human coronavirus 229E infection in human epithelial lung cells (L132) by chloroquine: Involvement of p38 MAPK and ERK, Antivir. Res,
doi:10.1016/j.antiviral.2007.10.011
Kontoghiorghes, Efstathiou, Ioannou-Loucaides, Kolnagou, Chelators Controlling Metal Metabolism and Toxicity Pathways: Applications in Cancer Prevention, Diagnosis and Treatment, Hemoglobin,
doi:10.1080/03630260701727119
Korant, Kauer, Butterworth, Zinc ions inhibit replication of rhinoviruses, Nature,
doi:10.1038/248588a0
Kouroumalis, Koskinas, Treatment of chronic active hepatitis B (CAH B) with chloroquine: A preliminary report, Ann. Acad. Med. Singap
Krafts, Hempelmann, Skórska-Stania, From methylene blue to chloroquine: A brief review of the development of an antimalarial therapy, Parasitol. Res,
doi:10.1007/s00436-012-2886-x
Krenn, Gaudernak, Holzer, Lanke, Van Kuppeveld et al., Antiviral Activity of the Zinc Ionophores Pyrithione and Hinokitiol against Picornavirus Infections, JVI,
doi:10.1128/JVI.01543-08
Lancet, Expression of concern: Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: A multinational registry analysis, Lancet,
doi:10.1016/S0140-6736(20)31290-3
Lanke, Krenn, Melchers, Seipelt, Van Kuppeveld, PDTC inhibits picornavirus polyprotein processing and RNA replication by transporting zinc ions into cells, J. Gen. Virol,
doi:10.1099/vir.0.82634-0
Lannfelt, Blennow, Zetterberg, Batsman, Ames et al., Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer's disease: A phase IIa, double-blind, randomised, placebo-controlled trial, Lancet Neurol,
doi:10.1016/S1474-4422(08)70167-4
Lefkowitz, Dempsey, Hendrickson, Orton, Siddell et al., Virus taxonomy: The database of the International Committee on Taxonomy of Viruses (ICTV), Nucleic Acids Res,
doi:10.1093/nar/gkx932
Li, Qi, Li, Hou, Lu et al., A novel dithiocarbamate derivative induces cell apoptosis through p53-dependent intrinsic pathway and suppresses the expression of the E6 oncogene of human papillomavirus 18 in HeLa cells, Apoptosis,
doi:10.1007/s10495-015-1114-4
Li, Zhu, Ji, Quanquin, Deng et al., Chloroquine, a FDA-approved Drug, Prevents Zika Virus Infection and its Associated Congenital Microcephaly in Mice, EBioMedicine,
doi:10.1016/j.ebiom.2017.09.034
Liu, Cao, Xu, Wang, Zhang et al., Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro, Cell Discov,
doi:10.1038/s41421-020-0156-0
Lovejoy, Richardson, Iron chelators as anti-neoplastic agents: Current developments and promise of the PIH class of chelators, Curr. Med. Chem,
doi:10.2174/0929867033457557
Madrid, Chopra, Manger, Gilfillan, Keepers et al., A systematic screen of FDA-approved drugs for inhibitors of biological threat agents, PLoS ONE,
doi:10.1371/journal.pone.0060579
Mahévas, Tran, Roumier, Chabrol, Paule et al., Clinical efficacy of hydroxychloroquine in patients with covid-19 pneumonia who require oxygen: Observational comparative study using routine care data, BMJ,
doi:10.1136/bmj.m1844
Mao, Li, Sprangers, Wang, Venugopal et al., Clioquinol inhibits the proteasome and displays preclinical activity in leukemia and myeloma, Leukemia,
doi:10.1038/leu.2008.232
Mcgowan, Harper, Davison, Jeong, Mros et al., Substituted sulfonamide bioisosteres of 8-hydroxyquinoline as zinc-dependent antibacterial compounds, Bioorg. Med. Chem. Lett,
doi:10.1016/j.bmcl.2020.127110
Mehra, Desai, Kuy, Henry, Patel, Cardiovascular Disease, Drug Therapy, and Mortality in Covid-19, N. Engl. J. Med,
doi:10.1056/NEJMoa2007621
Mehra, Desai, Ruschitzka, Patel, Retracted, Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: A multinational registry analysis, Lancet,
doi:10.1016/S0140-6736(20)31180-6
Mehra, Ruschitzka, Patel, Retraction-Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: A multinational registry analysis, Lancet,
doi:10.1016/S0140-6736(20)31324-6
Mercer, Rekedal, Garg, Lu, Massarotti et al., Hydroxychloroquine improves insulin sensitivity in obese non-diabetic individuals, Arthritis Res. Ther,
doi:10.1186/ar3868
Milewska, Chi, Szczepanski, Barreto-Duran, Liu et al., HTCC as a highly effective polymeric inhibitor of SARS-CoV-2 and MERS-CoV, bioRxiv,
doi:10.1101/2020.03.29.014183
Misra, Reaction of copper-zinc superoxide dismutase with diethyldithiocarbamate, J. Biol. Chem
Mizui, Yamashina, Tanida, Takei, Ueno et al., Inhibition of hepatitis C virus replication by chloroquine targeting virus-associated autophagy, J. Gastroenterol,
doi:10.1007/s00535-009-0132-9
Mochizuki, Satsu, Shimizu, Signaling pathways involved in tumor necrosis factor alpha-induced upregulation of the taurine transporter in Caco-2 cells, FEBS Lett,
doi:10.1016/j.febslet.2005.04.063
Moraes Falcão, Terrabuio, Diniz, Da Silva Evangelista, Souza et al., Efficacy and safety of chloroquine plus prednisone for the treatment of autoimmune hepatitis in a randomized trial, JGH Open,
doi:10.1002/jgh3.12258
Morra, Savarino, Gennero, Pescarmona, Effects of chloroquine on iron metabolism in a lymphocytic cell line, J. Clin. Virol
Naarding, Baan, Pollakis, Paxton, Effect of chloroquine on reducing HIV-1 replication in vitro and the DC-SIGN mediated transfer of virus to CD4 + T-lymphocytes, Retrovirology,
doi:10.1186/1742-4690-4-6
Nguyen, Vendier, Stigliani, Meunier, Robert, Structures of the Copper and Zinc Complexes of PBT2, a Chelating Agent Evaluated as Potential Drug for Neurodegenerative Diseases, Eur. J. Inorg. Chem,
doi:10.1002/ejic.201601120
Nobel, Kimland, Lind, Orrenius, Slater, Dithiocarbamates induce apoptosis in thymocytes by raising the intracellular level of redox-active copper, J. Biol. Chem,
doi:10.1074/jbc.270.44.26202
Novick, Godfrey, Godfrey, Wilder, How does zinc modify the common cold? Clinical observations and implications regarding mechanisms of action, Med. Hypotheses,
doi:10.1016/S0306-9877(96)90259-5
Ooi, Chew, Loh, Chua, In vitro inhibition of human influenza a virus replication by chloroquine, Virol. J,
doi:10.1186/1743-422X-3-39
Ou, Liu, Lei, Li, Mi et al., Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV, Nat. Commun,
doi:10.1038/s41467-020-15562-9
Oxford, Perrin, Inhibition of the particle-associated RNA-dependent RNA polymerase activity of influenza viruses by chelating agents, J. Gen. Virol,
doi:10.1099/0022-1317-23-1-59
Pasquet, Chevalier, Pelletier, Couval, Bouvier et al., The contribution of zinc ions to the antimicrobial activity of zinc oxide, Colloids Surf. A Physicochem. Eng. Asp,
doi:10.1016/j.colsurfa.2014.05.057
Patel, Garrad, Meisel, Negin, Gokel et al., Synthetic ionophores as non-resistant antibiotic adjuvants, RSC Adv,
doi:10.1039/C8RA07641C
Pelczar, Microbiology (An Application Based Approach
Perlman, Netland, Coronaviruses post-SARS: Update on replication and pathogenesis, Nat. Rev. Microbiol,
doi:10.1038/nrmicro2147
Polatnick, Bachrach, Effect of Zinc and Other Chemical Agents on Foot-and-Mouth Disease Virus Replication, Antimicrob. Agents Chemother,
doi:10.1128/AAC.13.5.731
Potocki, Rowinska-Zyrek, Witkowska, Pyrkosz, Szebesczyk et al., Metal transport and homeostasis within the human body: Toxicity associated with transport abnormalities, Curr. Med. Chem,
doi:10.2174/092986712800609698
Puschner, Dechant, Common Toxins in Equine Practice
Qiu, Chen, Chu, Song, Yang et al., Zinc ionophores pyrithione inhibits herpes simplex virus replication through interfering with proteasome function and NF-κB activation, Antivir. Res,
doi:10.1016/j.antiviral.2013.07.001
Qiu, Kroeker, He, Kozak, Audet et al., Prophylactic Efficacy of Quercetin 3-β-O -d-Glucoside against Ebola Virus Infection, Antimicrob. Agents Chemother
Rainsford, Parke, Clifford-Rashotte, Kean, Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases, Inflammopharmacology,
doi:10.1007/s10787-015-0239-y
Ritchie, Bush, Mackinnon, Macfarlane, Mastwyk et al., Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: A pilot phase 2 clinical trial, Arch. Neurol,
doi:10.1001/archneur.60.12.1685
Rojas, Del Campo, Clement, Lemasson, García-Valdecasas et al., Effect of Quercetin on Hepatitis C Virus Life Cycle: From Viral to Host Targets, Sci. Rep,
doi:10.1038/srep31777
Romanelli, Smith, Hoven, Chloroquine and Hydroxychloroquine as Inhibitors of Human Immunodeficiency Virus (HIV-1) Activity, Curr. Pharm. Des,
doi:10.2174/1381612043383791
Rut, Groborz, Zhang, Sun, Zmudzinski et al., Substrate specificity profiling of SARS-CoV-2 M pro protease provides basis for anti-COVID-19 drug design, bioRxiv
Rutkowski, Brzezinski, Structures and Properties of Naturally Occurring Polyether Antibiotics, Biomed Res. Int,
doi:10.1155/2013/162513
Savarino, Boelaert, Cassone, Majori, Cauda, Effects of chloroquine on viral infections: An old drug against today's diseases, Lancet Infect. Dis,
doi:10.1016/S1473-3099(03)00806-5
Savarino, Gennero, Chen, Serrano, Malavasi et al., Anti-HIV effects of chloroquine: Mechanisms of inhibition and spectrum of activity, J. Acquir. Immune Defic. Syndr,
doi:10.1097/00002030-200111230-00002
Savarino, Lucia, Rastrelli, Rutella, Golotta et al., Anti-HIV Effects of Chloroquine: Inhibition of viral particle glycosylation and synergism with protease inhibitors, J. Acquir. Immune Defic. Syndr,
doi:10.1097/00126334-200403010-00002
Schoen, Unzicker, Stuhler, Elias, Einsele et al., Life-Threatening Infection Caused by Daptomycin-Resistant Corynebacterium jeikeium in a Neutropenic Patient, J. Clin. Microbiol,
doi:10.1128/JCM.00457-09
Scholz, Derwand, Does Zinc Supplementation Enhance the Clinical Efficacy of Chloroquine/Hydroxychloroquine to Win Todays Battle Against COVID-19?, Preprints
Scholz, Derwand, Zelenko, COVID-19 Outpatients-Early Risk-Stratified Treatment with Zinc Plus Low Dose Hydroxychloroquine and Azithromycin: A Retrospective Case Series Study, Preprints,
doi:10.20944/preprints202007.0025.v1
Schreck, Meier, Männel, Dröge, Baeuerle, Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells, J. Exp. Med,
doi:10.1084/jem.175.5.1181
Schwartz, Zinc Pyrithione: A Topical Antimicrobial with Complex Pharmaceutics, J. Drugs Dermatol
Sharma, Kumar, Kumar, Kaushik, Kaushik et al., Synthesis and biological evaluation of some pyrazolylpyrazolines as anti-inflammatory-antimicrobial agents, Eur. J. Med. Chem,
doi:10.1016/j.ejmech.2010.01.059
Shen, Brodbelt, Characterization of ionophore-metal complexes by infrared multiphoton photodissociation and collision activated dissociation in a quadrupole ion trap mass spectrometer, Analyst,
doi:10.1039/a908607b
Shibata, Aoki, Tsurumi, Sugiura, Nishiyama et al., Mechanism of Uncoating of Influenza B Virus in MDCK Cells: Action of Chloroquine, J. Gen. Virol,
doi:10.1099/0022-1317-64-5-1149
Si, Mcmanus, Zhang, Yuan, Cheung et al., Pyrrolidine dithiocarbamate reduces coxsackievirus B3 replication through inhibition of the ubiquitin-proteasome pathway, JVI,
doi:10.1128/JVI.79.13.8014-8023.2005
Simmons, Gosalia, Rennekamp, Reeves, Diamond et al., Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry, Proc. Natl. Acad. Sci,
doi:10.1073/pnas.0505577102
Solomon, Massarotti, Garg, Liu, Canning et al., Association between disease-modifying antirheumatic drugs and diabetes risk in patients with rheumatoid arthritis and psoriasis, JAMA,
doi:10.1001/jama.2011.878
Sperber, Chiang, Chen, Ross, Chusid et al., Comparison of hydroxychloroquine with zidovudine in asymptomatic patients infected with human immunodeficiency virus type 1, Clin. Ther,
doi:10.1016/S0149-2918(97)80045-8
Sperber, Kalb, Stecher, Banerjee, Mayer, Inhibition of human immunodeficiency virus type 1 replication by hydroxychloroquine in T cells and monocytes, AIDS Res. Hum. Retrovir,
doi:10.1089/aid.1993.9.91
Sperber, Louie, Kraus, Proner, Sapira et al., Hydroxychloroquine treatment of patients with human immunodeficiency virus type 1, Clin. Ther,
doi:10.1016/0149-2918(95)80039-5
Stadler, Masignani, Eickmann, Becker, Abrignani et al., SARS-beginning to understand a new virus, Nat. Rev. Microbiol,
doi:10.1038/nrmicro775
Tonew, Tonew, Graefe, Zöpel, Griseochelinmethylester, ein neues Polyether-Derivat mit antiviraler Wirksamkeit, Pharmazie
Tricou, Minh, Van, Lee, Farrar et al., A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults, PLoS Negl. Trop. Dis,
doi:10.1371/journal.pntd.0000785
Tsai, Nara, Kung, Oroszlan, Inhibition of human immunodeficiency virus infectivity by chloroquine, AIDS Res. Hum. Retrovir,
doi:10.1089/aid.1990.6.481
Tsiang, Superti, Ammonium chloride and chloroquine inhibit rabies virus infection in neuroblastoma cells. Brief report, Arch. Virol,
doi:10.1007/BF01310010
Uchide, Ohyama, Bessho, Yuan, Yamakawa, Effect of antioxidants on apoptosis induced by influenza virus infection: Inhibition of viral gene replication and transcription with pyrrolidine dithiocarbamate, Antivir. Res,
doi:10.1016/S0166-3542(02)00109-2
Uchide, Toyoda, Antioxidant therapy as a potential approach to severe influenza-associated complications, Molecules,
doi:10.3390/molecules16032032
Vaira, Bazzicalupi, Orioli, Messori, Bruni et al., Clioquinol, a drug for Alzheimer's disease specifically interfering with brain metal metabolism: Structural characterization of its zinc(II) and copper(II) complexes, Inorg. Chem,
doi:10.1021/ic0494051
Velthuis, Van Den Worm, Sims, Baric, Snijder et al., Zn 2+ Inhibits Coronavirus and Arterivirus RNA Polymerase Activity In Vitro and Zinc Ionophores Block the Replication of These Viruses in Cell Culture, PLoS Pathog,
doi:10.1371/journal.ppat.1001176
Verhaegh, Richard, Hainaut, Regulation of p53 by metal ions and by antioxidants: Dithiocarbamate down-regulates p53 DNA-binding activity by increasing the intracellular level of copper, Mol. Cell. Biol,
doi:10.1128/MCB.17.10.5699
Vincent, Bergeron, Benjannet, Erickson, Rollin et al., Chloroquine is a potent inhibitor of SARS coronavirus infection and spread, Virol. J,
doi:10.1186/1743-422X-2-69
Walther, Boldt, Kage, Lauterbach, Martin et al., Zincophorin-biosynthesis in Streptomyces griseus and antibiotic properties, GMS Infect. Dis,
doi:10.3205/id000026
Wang, Cao, Zhang, Yang, Liu et al., Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res,
doi:10.1038/s41422-020-0282-0
Wong, He, Siragam, Bi, Mbikay et al., Antiviral activity of quercetin-3-β-O-D-glucoside against Zika virus infection, Virol. Sin,
doi:10.1007/s12250-017-4057-9
Wu, Li, Li, He, Jiang et al., Quercetin as an Antiviral Agent Inhibits Influenza A Virus (IAV) Entry, Viruses,
doi:10.3390/v8010006
Wu, Momand, Pyrrolidine dithiocarbamate prevents p53 activation and promotes p53 cysteine residue oxidation, J. Biol. Chem,
doi:10.1074/jbc.273.30.18898
Xu, Liu, Weiss, Arnold, Sarafianos et al., Molecular model of SARS coronavirus polymerase: Implications for biochemical functions and drug design, Nucleic Acids Res,
doi:10.1093/nar/gkg916
Yan, Zou, Sun, Li, Xu et al., Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model, Cell Res
Yang, Shen, Targeting the Endocytic Pathway and Autophagy Process as a Novel Therapeutic Strategy in COVID-19, Int. J. Biol. Sci,
doi:10.7150/ijbs.45498
Yu, Li, Chen, Zhou, Wang et al., Erratum to: Low dose of hydroxychloroquine reduces fatality of critically ill patients with COVID-19, Sci. China Life Sci
Yu, Zhou, Lind, Ding, Clioquinol targets zinc to lysosomes in human cancer cells, Biochem. J,
doi:10.1042/BJ20081421
Zhang, Lin, Sun, Curth, Drosten et al., Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors, Science,
doi:10.1126/science.abb3405
Zhang, Yi, Li, Zhang, Peng et al., Chloroquine inhibits endosomal viral RNA release and autophagy-dependent viral replication and effectively prevents maternal to fetal transmission of Zika virus, Antivir. Res,
doi:10.1016/j.antiviral.2019.104547
Zumla, Chan, Azhar, Hui, Yuen, Coronaviruses-drug discovery and therapeutic options, Nat. Rev. Drug Discov,
doi:10.1038/nrd.2015.37
Ątły, Potocki, Rowi Ńska-Żyrek, Zinc Homeostasis at the Bacteria/Host Interface-From Coordination Chemistry to Nutritional Immunity, Chemistry,
doi:10.1002/chem.201602376
{ 'indexed': {'date-parts': [[2024, 1, 29]], 'date-time': '2024-01-29T21:41:30Z', 'timestamp': 1706564490514},
'reference-count': 200,
'publisher': 'MDPI AG',
'issue': '9',
'license': [ { 'start': { 'date-parts': [[2020, 9, 1]],
'date-time': '2020-09-01T00:00:00Z',
'timestamp': 1598918400000},
'content-version': 'unspecified',
'delay-in-days': 0,
'URL': 'https://creativecommons.org/licenses/by/4.0/'}],
'funder': [ { 'DOI': '10.13039/501100004281',
'name': 'Narodowe Centrum Nauki',
'doi-asserted-by': 'publisher',
'award': ['UMO-2017/26/A/ST5/00363', 'UMO-2017/26/A/ST5/00364']}],
'content-domain': {'domain': [], 'crossmark-restriction': False},
'abstract': '<jats:p>Zn(II) is an inhibitor of SARS-CoV-2′s RNA-dependent RNA polymerase, and chloroquine '
'and hydroxychloroquine are Zn(II) ionophores–this statement gives a curious mind a lot to '
'think about. We show results of the first clinical trials on chloroquine (CQ) and '
'hydroxychloroquine (HCQ) in the treatment of COVID-19, as well as earlier reports on the '
'anticoronaviral properties of these two compounds and of Zn(II) itself. Other FDA-approved '
'Zn(II) ionophores are given a decent amount of attention and are thought of as possible '
'COVID-19 therapeutics.</jats:p>',
'DOI': '10.3390/ph13090228',
'type': 'journal-article',
'created': {'date-parts': [[2020, 9, 1]], 'date-time': '2020-09-01T12:53:43Z', 'timestamp': 1598964823000},
'page': '228',
'source': 'Crossref',
'is-referenced-by-count': 21,
'title': 'Zinc(II)—The Overlooked Éminence Grise of Chloroquine’s Fight against COVID-19?',
'prefix': '10.3390',
'volume': '13',
'author': [ { 'ORCID': 'http://orcid.org/0000-0002-4314-9599',
'authenticated-orcid': False,
'given': 'Aleksandra',
'family': 'Hecel',
'sequence': 'first',
'affiliation': []},
{ 'ORCID': 'http://orcid.org/0000-0001-9765-8914',
'authenticated-orcid': False,
'given': 'Małgorzata',
'family': 'Ostrowska',
'sequence': 'additional',
'affiliation': []},
{'given': 'Kamila', 'family': 'Stokowa-Sołtys', 'sequence': 'additional', 'affiliation': []},
{'given': 'Joanna', 'family': 'Wątły', 'sequence': 'additional', 'affiliation': []},
{ 'ORCID': 'http://orcid.org/0000-0002-4699-7665',
'authenticated-orcid': False,
'given': 'Dorota',
'family': 'Dudek',
'sequence': 'additional',
'affiliation': []},
{'given': 'Adriana', 'family': 'Miller', 'sequence': 'additional', 'affiliation': []},
{'given': 'Sławomir', 'family': 'Potocki', 'sequence': 'additional', 'affiliation': []},
{ 'ORCID': 'http://orcid.org/0000-0002-1064-1237',
'authenticated-orcid': False,
'given': 'Agnieszka',
'family': 'Matera-Witkiewicz',
'sequence': 'additional',
'affiliation': []},
{'given': 'Alicia', 'family': 'Dominguez-Martin', 'sequence': 'additional', 'affiliation': []},
{'given': 'Henryk', 'family': 'Kozłowski', 'sequence': 'additional', 'affiliation': []},
{ 'ORCID': 'http://orcid.org/0000-0002-0425-1128',
'authenticated-orcid': False,
'given': 'Magdalena',
'family': 'Rowińska-Żyrek',
'sequence': 'additional',
'affiliation': []}],
'member': '1968',
'published-online': {'date-parts': [[2020, 9, 1]]},
'reference': [ {'key': 'ref1', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.ppat.1001176'},
{'key': 'ref2', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.pone.0109180'},
{'key': 'ref3', 'doi-asserted-by': 'publisher', 'DOI': '10.5582/bst.2020.01047'},
{'key': 'ref4', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.ijantimicag.2020.105949'},
{'key': 'ref5', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s11427-020-1751-3'},
{'key': 'ref6', 'doi-asserted-by': 'publisher', 'DOI': '10.1136/bmj.m1844'},
{'key': 'ref7', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0140-6736(20)31180-6'},
{ 'key': 'ref8',
'unstructured': 'WHO Director-General’s Opening Remarks at the Media Briefing on '
'COVID-19—25 May '
'2020https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---25-may-2020'},
{'key': 'ref9', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0140-6736(20)31290-3'},
{'key': 'ref10', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0140-6736(20)31324-6'},
{'key': 'ref11', 'doi-asserted-by': 'publisher', 'DOI': '10.1056/NEJMoa2007621'},
{'key': 'ref12', 'doi-asserted-by': 'publisher', 'DOI': '10.20944/preprints202004.0124.v1'},
{'key': 'ref13', 'doi-asserted-by': 'publisher', 'DOI': '10.20944/preprints202007.0025.v1'},
{'key': 'ref14', 'doi-asserted-by': 'publisher', 'DOI': '10.1101/2020.05.02.20080036'},
{'key': 'ref15', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.77.15.8181-8186.2003'},
{'key': 'ref16', 'doi-asserted-by': 'publisher', 'DOI': '10.1006/viro.2000.0421'},
{'key': 'ref17', 'doi-asserted-by': 'publisher', 'DOI': '10.1074/jbc.M111.325530'},
{'key': 'ref18', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/nrmicro2147'},
{'key': 'ref19', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/nrmicro775'},
{'key': 'ref20', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.virusres.2006.01.017'},
{'key': 'ref21', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-019-10280-3'},
{'key': 'ref22', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.abb7498'},
{'key': 'ref23', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkg916'},
{'key': 'ref24', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/nrmicro975'},
{'key': 'ref25', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0166-3542(02)00109-2'},
{'key': 'ref26', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/AAC.48.3.783-790.2004'},
{'key': 'ref27', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.76.12.6004-6015.2002'},
{'key': 'ref28', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.79.13.8014-8023.2005'},
{'key': 'ref29', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/248588a0'},
{'key': 'ref30', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/AAC.13.5.731'},
{'key': 'ref31', 'doi-asserted-by': 'publisher', 'DOI': '10.1099/vir.0.82634-0'},
{'key': 'ref32', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.01543-08'},
{'key': 'ref33', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0166-3542(99)00040-6'},
{'key': 'ref34', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/AAC.19.2.213'},
{'key': 'ref35', 'doi-asserted-by': 'publisher', 'DOI': '10.1099/0022-1317-71-12-2989'},
{'key': 'ref36', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.18.1.298-306.1976'},
{'key': 'ref37', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0306-9877(96)90259-5'},
{'key': 'ref38', 'doi-asserted-by': 'publisher', 'DOI': '10.1099/0022-1317-23-1-59'},
{'key': 'ref39', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.73.2.1649-1654.1999'},
{'key': 'ref40', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0166-3542(02)00101-8'},
{'key': 'ref41', 'series-title': 'The PyMOL Molecular Graphics System', 'year': '2002'},
{ 'key': 'ref42',
'unstructured': 'SARS-CoV-2 RNA-Dependent RNA Polymerase in Complex with Cofactors in '
'Reduced Conditionhttps://www.rcsb.org/structure/7btf'},
{'key': 'ref43', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41421-020-0156-0'},
{'key': 'ref44', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/0002-9343(83)91265-2'},
{'key': 'ref45'},
{'key': 'ref46', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s10787-015-0239-y'},
{'key': 'ref47', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s00436-012-2886-x'},
{'key': 'ref48', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/ar3868'},
{'key': 'ref49', 'doi-asserted-by': 'publisher', 'DOI': '10.1001/jama.2011.878'},
{'key': 'ref50', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.imlet.2013.07.004'},
{'key': 'ref51', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S1473-3099(03)00806-5'},
{'key': 'ref52', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkx932'},
{'key': 'ref53', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.bbrc.2004.08.085'},
{'key': 'ref54', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/nrd.2015.37'},
{'key': 'ref55', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/1743-422X-2-69'},
{'key': 'ref56', 'doi-asserted-by': 'publisher', 'DOI': '10.7150/ijbs.45498'},
{'key': 'ref57', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.virol.2017.12.015'},
{'key': 'ref58', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.0505577102'},
{'key': 'ref59', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41422-020-0282-0'},
{'key': 'ref60'},
{'key': 'ref61', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/AAC.03011-14'},
{ 'key': 'ref62',
'series-title': 'Goldman’s Cecil Medicine',
'author': 'Goldman',
'year': '2011'},
{ 'key': 'ref63',
'series-title': 'Microbiology (An Application Based Approach)',
'author': 'Pelczar',
'year': '2010'},
{'key': 'ref64', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/AAC.01509-08'},
{'key': 'ref65', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2007.10.011'},
{'key': 'ref66', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.virusres.2018.05.028'},
{'key': 'ref67', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cvsm.2004.10.011'},
{'key': 'ref68', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2013.04.016'},
{'key': 'ref69'}, {'key': 'ref70'}, {'key': 'ref71'}, {'key': 'ref72'}, {'key': 'ref73'},
{'key': 'ref74'}, {'key': 'ref75'}, {'key': 'ref76'}, {'key': 'ref77'}, {'key': 'ref78'},
{'key': 'ref79'}, {'key': 'ref80'}, {'key': 'ref81'}, {'key': 'ref82'}, {'key': 'ref83'},
{'key': 'ref84'}, {'key': 'ref85'}, {'key': 'ref86'},
{'key': 'ref87', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-020-15562-9'},
{'key': 'ref88', 'doi-asserted-by': 'publisher', 'DOI': '10.1101/2020.03.29.014183'},
{'key': 'ref89', 'doi-asserted-by': 'publisher', 'DOI': '10.1101/2020.03.07.981928'},
{'key': 'ref90', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.abb3405'},
{'key': 'ref91', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/bi0504761'},
{'key': 'ref92', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/sj.emboj.7601368'},
{'key': 'ref93', 'doi-asserted-by': 'publisher', 'DOI': '10.2174/092986706777584988'},
{'key': 'ref94', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.pone.0036521'},
{'key': 'ref95', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S1386-6532(00)00140-2'},
{'key': 'ref96', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S1386-6532(00)00139-6'},
{'key': 'ref97', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/1742-4690-4-6'},
{'key': 'ref98', 'doi-asserted-by': 'publisher', 'DOI': '10.1097/00126334-200403010-00002'},
{'key': 'ref99', 'doi-asserted-by': 'publisher', 'DOI': '10.2174/1381612043383791'},
{'key': 'ref100', 'doi-asserted-by': 'publisher', 'DOI': '10.1097/00002030-200111230-00002'},
{'key': 'ref101', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0165-2478(98)00096-0'},
{'key': 'ref102', 'doi-asserted-by': 'publisher', 'DOI': '10.1159/000024948'},
{ 'key': 'ref103',
'first-page': '149',
'article-title': 'Treatment of chronic active hepatitis B (CAH B) with chloroquine: A '
'preliminary report',
'volume': '15',
'author': 'Kouroumalis',
'year': '1986',
'journal-title': 'Ann. Acad. Med. Singap.'},
{'key': 'ref104', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s00535-009-0132-9'},
{'key': 'ref105', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/jgh3.12258'},
{'key': 'ref106', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.65.12.7008-7011.1991'},
{'key': 'ref107', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/1743-422X-3-39'},
{'key': 'ref108', 'doi-asserted-by': 'publisher', 'DOI': '10.1111/j.1750-2659.2007.00027.x'},
{'key': 'ref109', 'doi-asserted-by': 'publisher', 'DOI': '10.1099/0022-1317-64-5-1149'},
{'key': 'ref110', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/cr.2012.165'},
{'key': 'ref111', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/v8120322'},
{'key': 'ref112', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.ebiom.2017.09.034'},
{'key': 'ref113', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2019.104547'},
{'key': 'ref114', 'doi-asserted-by': 'publisher', 'DOI': '10.1099/jgv.0.000309'},
{'key': 'ref115', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2015.03.005'},
{'key': 'ref116', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/BF01310010'},
{'key': 'ref117', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/jmv.21663'},
{'key': 'ref118', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/jmv.22019'},
{'key': 'ref119', 'doi-asserted-by': 'publisher', 'DOI': '10.1155/2013/282734'},
{'key': 'ref120', 'doi-asserted-by': 'publisher', 'DOI': '10.1111/1348-0421.12154'},
{'key': 'ref121', 'doi-asserted-by': 'publisher', 'DOI': '10.1089/vim.2014.0090'},
{'key': 'ref122', 'doi-asserted-by': 'publisher', 'DOI': '10.1099/vir.0.017269-0'},
{'key': 'ref123', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/0042-6822(84)90356-8'},
{'key': 'ref124', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/0149-2918(95)80039-5'},
{'key': 'ref125', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0149-2918(97)80045-8'},
{'key': 'ref126', 'doi-asserted-by': 'publisher', 'DOI': '10.1089/aid.1993.9.91'},
{'key': 'ref127', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.90.6.2399'},
{'key': 'ref128', 'doi-asserted-by': 'publisher', 'DOI': '10.1006/bbrc.1996.1302'},
{ 'key': 'ref129',
'first-page': '91',
'article-title': 'Effects of chloroquine on iron metabolism in a lymphocytic cell line',
'volume': '16',
'author': 'Morra',
'year': '2000',
'journal-title': 'J. Clin. Virol.'},
{'key': 'ref130', 'doi-asserted-by': 'publisher', 'DOI': '10.1089/aid.1990.6.481'},
{'key': 'ref131', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.pntd.0000785'},
{'key': 'ref132', 'doi-asserted-by': 'publisher', 'DOI': '10.1590/S0074-02762013000500010'},
{'key': 'ref133', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.pone.0060579'},
{'key': 'ref134', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.vetmic.2017.01.033'},
{'key': 'ref135', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2013.07.001'},
{'key': 'ref136', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.fct.2007.05.015'},
{'key': 'ref137', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/molecules16032032'},
{'key': 'ref138', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/v8010006'},
{'key': 'ref139', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s12250-015-3584-5'},
{'key': 'ref140', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/srep31777'},
{'key': 'ref141', 'doi-asserted-by': 'publisher', 'DOI': '10.1111/j.1365-2893.2011.01507.x'},
{'key': 'ref142', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/AAC.00307-16'},
{'key': 'ref143', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.apjtm.2015.12.002'},
{'key': 'ref144', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/ijms131216785'},
{'key': 'ref145', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s12250-017-4057-9'},
{'key': 'ref146', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0005-2736(03)00158-5'},
{'key': 'ref147', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/jm0508888'},
{'key': 'ref148', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.bmcl.2005.01.083'},
{'key': 'ref149', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s10495-015-1114-4'},
{'key': 'ref150', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/0140-6736(90)90802-C'},
{'key': 'ref151', 'doi-asserted-by': 'publisher', 'DOI': '10.7164/antibiotics.37.1501'},
{'key': 'ref152', 'doi-asserted-by': 'publisher', 'DOI': '10.7164/antibiotics.37.836'},
{'key': 'ref153', 'doi-asserted-by': 'publisher', 'DOI': '10.1039/c39840000599'},
{'key': 'ref154'},
{ 'key': 'ref155',
'first-page': '717',
'article-title': 'Griseochelinmethylester, ein neues Polyether-Derivat mit antiviraler '
'Wirksamkeit',
'volume': '43',
'author': 'Tonew',
'year': '1988',
'journal-title': 'Pharmazie'},
{'key': 'ref156', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.bcp.2005.01.001'},
{'key': 'ref157', 'doi-asserted-by': 'publisher', 'DOI': '10.2174/092986712800609698'},
{'key': 'ref158', 'doi-asserted-by': 'publisher', 'DOI': '10.1158/0008-5472.CAN-08-0601'},
{'key': 'ref159', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/iub.253'},
{'key': 'ref160', 'doi-asserted-by': 'publisher', 'DOI': '10.2174/0929867033457557'},
{'key': 'ref161', 'doi-asserted-by': 'publisher', 'DOI': '10.1080/03630260701727119'},
{'key': 'ref162', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/inorganics6040126'},
{'key': 'ref163', 'doi-asserted-by': 'publisher', 'DOI': '10.1006/bbrc.1999.0814'},
{ 'key': 'ref164',
'series-title': 'Encyclopedia of Reagents for Organic Synthesis',
'first-page': '1875',
'article-title': '1-Hydroxypyridine-2(1H)-thione',
'author': 'Knight',
'year': '2001'},
{'key': 'ref165', 'doi-asserted-by': 'publisher', 'DOI': '10.1196/annals.1299.056'},
{'key': 'ref166', 'doi-asserted-by': 'publisher', 'DOI': '10.1158/0008-5472.CAN-04-3577'},
{'key': 'ref167', 'doi-asserted-by': 'publisher', 'DOI': '10.1001/archneur.60.12.1685'},
{ 'key': 'ref168',
'doi-asserted-by': 'crossref',
'first-page': '11623',
'DOI': '10.1016/S0021-9258(19)86530-4',
'article-title': 'Reaction of copper-zinc superoxide dismutase with '
'diethyldithiocarbamate',
'volume': '254',
'author': 'Misra',
'year': '1979',
'journal-title': 'J. Biol. Chem.'},
{'key': 'ref169', 'doi-asserted-by': 'publisher', 'DOI': '10.1084/jem.175.5.1181'},
{'key': 'ref170', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/MCB.17.10.5699'},
{'key': 'ref171', 'doi-asserted-by': 'publisher', 'DOI': '10.1074/jbc.273.30.18898'},
{'key': 'ref172', 'doi-asserted-by': 'publisher', 'DOI': '10.1074/jbc.270.44.26202'},
{ 'key': 'ref173',
'doi-asserted-by': 'publisher',
'DOI': '10.1046/j.1471-4159.1999.721586.x'},
{ 'key': 'ref174',
'series-title': 'Equine Medicine',
'first-page': '922',
'article-title': 'Common Toxins in Equine Practice',
'author': 'Puschner',
'year': '2015'},
{'key': 'ref175', 'doi-asserted-by': 'publisher', 'DOI': '10.1039/C8RA07641C'},
{'key': 'ref176', 'doi-asserted-by': 'publisher', 'DOI': '10.1155/2013/162513'},
{'key': 'ref177', 'doi-asserted-by': 'publisher', 'DOI': '10.1039/a908607b'},
{'key': 'ref178', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/clinids/5.1.137'},
{'key': 'ref179', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/chem.201602376'},
{'key': 'ref180', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.colsurfa.2014.05.057'},
{ 'key': 'ref181',
'first-page': '140',
'article-title': 'Zinc Pyrithione: A Topical Antimicrobial with Complex Pharmaceutics',
'volume': '15',
'author': 'Schwartz',
'year': '2016',
'journal-title': 'J. Drugs Dermatol.'},
{'key': 'ref182', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/mSphere.00194-16'},
{'key': 'ref183', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.bmcl.2020.127110'},
{'key': 'ref184', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/ic0494051'},
{'key': 'ref185', 'doi-asserted-by': 'publisher', 'DOI': '10.1039/c3sc50882j'},
{'key': 'ref186', 'doi-asserted-by': 'publisher', 'DOI': '10.1042/BJ20081421'},
{'key': 'ref187', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/leu.2008.232'},
{'key': 'ref188', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.canlet.2008.06.011'},
{ 'key': 'ref189',
'series-title': 'Methods of Tissue Engineering',
'first-page': '727',
'article-title': 'Pesticides as Endocrine-Disrupting Chemicals',
'author': 'Kavlock',
'year': '2002'},
{'key': 'ref190', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/0006-2952(94)90586-X'},
{'key': 'ref191', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/ejic.201601120'},
{'key': 'ref192', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.neuron.2008.06.018'},
{'key': 'ref193', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S1474-4422(08)70167-4'},
{'key': 'ref194', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/mSphere.00157-20'},
{'key': 'ref195', 'doi-asserted-by': 'publisher', 'DOI': '10.3205/id000026'},
{ 'key': 'ref196',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/B978-0-12-374419-7.00018-4'},
{'key': 'ref197', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JCM.00457-09'},
{'key': 'ref198', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.febslet.2005.04.063'},
{'key': 'ref199', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.ejmech.2010.01.059'},
{ 'key': 'ref200',
'doi-asserted-by': 'publisher',
'DOI': '10.1111/j.1574-6968.2008.01069.x'}],
'container-title': 'Pharmaceuticals',
'original-title': [],
'language': 'en',
'link': [ { 'URL': 'https://www.mdpi.com/1424-8247/13/9/228/pdf',
'content-type': 'unspecified',
'content-version': 'vor',
'intended-application': 'similarity-checking'}],
'deposited': { 'date-parts': [[2021, 3, 30]],
'date-time': '2021-03-30T10:18:15Z',
'timestamp': 1617099495000},
'score': 1,
'resource': {'primary': {'URL': 'https://www.mdpi.com/1424-8247/13/9/228'}},
'subtitle': [],
'short-title': [],
'issued': {'date-parts': [[2020, 9, 1]]},
'references-count': 200,
'journal-issue': {'issue': '9', 'published-online': {'date-parts': [[2020, 9]]}},
'alternative-id': ['ph13090228'],
'URL': 'http://dx.doi.org/10.3390/ph13090228',
'relation': {},
'ISSN': ['1424-8247'],
'subject': [],
'container-title-short': 'Pharmaceuticals',
'published': {'date-parts': [[2020, 9, 1]]}}