Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19hcq.org COVID-19 treatment researchHCQHCQ (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Is Machine Learning a Better Way to IdentifyCOVID-19 Patients Who Might Benefit fromHydroxychloroquineTreatment?—The IDENTIFY Trial

Burdick et al., Journal of Clinical Medicine, doi:10.3390/jcm9123834
Nov 2020  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Mortality -59% Improvement Relative Risk Mortality (b) 71% HCQ for COVID-19  Burdick et al.  LATE TREATMENT Is late treatment with HCQ beneficial for COVID-19? Prospective study of 290 patients in the USA Higher mortality with HCQ (not stat. sig., p=0.12) c19hcq.org Burdick et al., J. Clinical Medicine, Nov 2020 FavorsHCQ Favorscontrol 0 0.5 1 1.5 2+
HCQ for COVID-19
1st treatment shown to reduce risk in March 2020, now with p < 0.00000000001 from 419 studies, recognized in 46 countries.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 112 treatments. c19hcq.org
290 patient observational trial in the USA, not showing a significant difference with HCQ treatment overall, but showing significantly lower mortality in a subgroup of patients where HCQ is expected to be beneficial based on a machine learning algorithm.
risk of death, 59.0% higher, HR 1.59, p = 0.12, treatment 142, control 148, adjusted per study, all patients.
risk of death, 71.0% lower, HR 0.29, p = 0.01, treatment 26, control 17, adjusted per study, subgroup of patients where treatment is predicted to be beneficial.
Effect extraction follows pre-specified rules prioritizing more serious outcomes. Submit updates
Burdick et al., 26 Nov 2020, prospective, USA, peer-reviewed, 14 authors.
This PaperHCQAll
Is Machine Learning a Better Way to Identify COVID-19 Patients Who Might Benefit from Hydroxychloroquine Treatment?—The IDENTIFY Trial
Hoyt Burdick, Carson Lam, Samson Mataraso, Anna Siefkas, Gregory Braden, R Phillip Dellinger, Andrea Mccoy, Jean-Louis Vincent, Abigail Green-Saxena, Gina Barnes, Jana Hoffman, Jacob Calvert, Emily Pellegrini, Ritankar Das
Journal of Clinical Medicine, doi:10.3390/jcm9123834
Therapeutic agents for the novel coronavirus disease 2019 (COVID-19) have been proposed, but evidence supporting their use is limited. A machine learning algorithm was developed in order to identify a subpopulation of COVID-19 patients for whom hydroxychloroquine was associated with improved survival; this population might be relevant for study in a clinical trial. A pragmatic trial was conducted at six United States hospitals. We enrolled COVID-19 patients that were admitted between 10 March and 4 June 2020. Treatment was not randomized. The study endpoint was mortality; discharge was a competing event. Hazard ratios were obtained on the entire population, and on the subpopulation indicated by the algorithm as suitable for treatment. A total of 290 patients were enrolled. In the subpopulation that was identified by the algorithm, hydroxychloroquine was associated with a statistically significant (p = 0.011) increase in survival (adjusted hazard ratio 0.29, 95% confidence interval (CI) 0.11-0.75). Adjusted survival among the algorithm indicated patients was 82.6% in the treated arm and 51.2% in the arm not treated. No association between treatment and mortality was observed in the general population. A 31% increase in survival at the end of the study was observed in a population of COVID-19 patients that were identified by a machine learning algorithm as having a better outcome with hydroxychloroquine treatment. Precision medicine approaches may be useful in identifying a subpopulation of COVID-19 patients more likely to be proven to benefit from hydroxychloroquine treatment in a clinical trial.
References
Aboughdir, Kirwin, Khader, Wang, Prognostic Value of Cardiovascular Biomarkers in COVID-19: A Review, Viruses, doi:10.3390/v12050527
Ahn, Shin, Kim, Lee, Kim et al., Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for Novel Coronavirus Disease
Alia, Grant-Kels, Does hydroxychloroquine combat COVID-19? A timeline of evidence, J. Am. Acad. Dermatol, doi:10.1016/j.jaad.2020.04.031
Aronson, Rehm, Building the foundation for genomics in precision medicine, Nat. Cell Biol, doi:10.1038/nature15816
Arshad, Kilgore, Chaudhry, Jacobsen, Wang et al., Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID, Int. J. Infect. Dis, doi:10.1016/j.ijid.2020.06.099
Ayerbe, Risco-Risco, Ayis, The association of treatment with hydroxychloroquine and hospital mortality in COVID-19 patients, Intern. Emerg. Med, doi:10.1007/s11739-020-02505-x
Azoulay, Fartoukh, Darmon, Géri, Voiriot et al., Increased mortality in patients with severe SARS-CoV-2 infection admitted within seven days of disease onset, Intensiv. Care Med, doi:10.1007/s00134-020-06202-3
Biot, Daher, Chavain, Fandeur, Khalife et al., Design and Synthesis of Hydroxyferroquine Derivatives with Antimalarial and Antiviral Activities, J. Med. Chem
Bono, Ashworth, Translating cancer research into targeted therapeutics, Nat. Cell Biol, doi:10.1038/nature09339
Borba, Val, Sampaio, Alexandre, Melo et al., Effect of High vs Low Doses of Chloroquine Diphosphate as Adjunctive Therapy for Patients Hospitalized with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection: A Randomized Clinical Trial, JAMA Netw. Open
Borba, Val, Sampaio, Alexandre, Melo et al., Effect of High vs Low Doses of Chloroquine References
Boulware, Pullen, Bangdiwala, Pastick, Lofgren et al., A Randomized Trial of Hydroxychloroquine as Postexposure Prophylaxis for Covid-19, New Engl. J. Med, doi:10.1056/NEJMoa2016638
Cao, Wang, Wen, Liu, Wang et al., A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19, New Engl. J. Med, doi:10.1056/NEJMoa2001282
Cao, Wang, Wen, Liu, Wang et al., A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19, New Engl. J. Med, doi:10.1056/NEJMoa2001282
Catteau, Dauby, Montourcy, Bottieau, Hautekiet et al., Low-dose hydroxychloroquine therapy and mortality in hospitalised patients with COVID-19: A nationwide observational study of 8075 participants, Int. J. Antimicrob. Agents, doi:10.1016/j.ijantimicag.2020.106144
Cavalcanti, Zampieri, Rosa, Azevedo, Veiga et al., Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19, N. Engl. J. Med, doi:10.1056/NEJMoa2019014
Collins, Varmus, A New Initiative on Precision Medicine, New Engl. J. Med, doi:10.1056/NEJMp1500523
Cortegiani, Ingoglia, Ippolito, Giarratano, Einav, A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19, J. Crit. Care, doi:10.1016/j.jcrc.2020.03.005
Dauby, Bottieau, The unfinished story of hydroxychloroquine in COVID-19: The right anti-inflammatory dose at the right moment?, Int. J. Infect. Dis, doi:10.1016/j.ijid.2020.10.032
Devaux, Rolain, Colson, Raoult, New insights on the antiviral effects of chloroquine against coronavirus: What to expect for COVID-19?, Int. J. Antimicrob. Agents, doi:10.1016/j.ijantimicag.2020.105938
Devaux, Rolain, Colson, Raoult, New insights on the antiviral effects of chloroquine against coronavirus: What to expect for COVID-19?, Int. J. Antimicrob. Agents, doi:10.1016/j.ijantimicag.2020.105938
Di Castelnuovo, Costanzo, Antinori, Berselli, Blandi et al., Use of hydroxychloroquine in hospitalised COVID-19 patients is associated with reduced mortality: Findings from the observational multicentre Italian CORIST study, Eur. J. Intern. Med, doi:10.1016/j.ejim.2020.08.019
Ferner, Aronson, Chloroquine and hydroxychloroquine in Covid-19, BMJ, doi:10.1136/bmj.m1432
Fine, Gray, A Proportional Hazards Model for the Subdistribution of a Competing Risk, J. Am. Stat. Assoc, doi:10.1080/01621459.1999.10474144
Gautret, Lagier, Parola, Hoang, Meddeb et al., Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial, Int. J. Antimicrob. Agents, doi:10.1016/j.ijantimicag.2020.105949
Geleris, Sun, Platt, Zucker, Baldwin et al., Observational Study of Hydroxychloroquine in Hospitalized Patients with Covid-19, N. Engl. J. Med, doi:10.1056/NEJMoa2012410
Gentry, Humphrey, Thind, Hendrickson, Kurdgelashvili et al., Long-term hydroxychloroquine use in patients with rheumatic conditions and development of SARS-CoV-2 infection: A retrospective cohort study, Lancet Rheumatol, doi:10.1016/S2665-9913(20)30305-2
Hernandez, Roman, Pasupuleti, Barboza-Meca, White, Update Alert 2: Hydroxychloroquine or Chloroquine for the Treatment or Prophylaxis of COVID, Ann. Intern. Med, doi:10.7326/L20-1054
Horby, Mafham, Linsell, Bell, Staplin et al., multi-centre, randomized, controlled trial, doi:10.1101/2020.07.15.20151852
Iyer, Hanrahan, Milowsky, Al-Ahmadie, Scott et al., Genome Sequencing Identifies a Basis for Everolimus Sensitivity, Science, doi:10.1126/science.1226344
Lai, Shih, Ko, Tang, Hsueh, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges, Int. J. Antimicrob. Agents, doi:10.1016/j.ijantimicag.2020.105924
Lai, Shih, Ko, Tang, Hsueh, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges, Int. J. Antimicrob. Agents, doi:10.1016/j.ijantimicag.2020.105924
Lammers, Brohet, Theunissen, Koster, Rood et al., Early hydroxychloroquine but not chloroquine use reduces ICU admission in COVID-19 patients, Int. J. Infect. Dis, doi:10.1016/j.ijid.2020.09.1460
Letai, Functional precision cancer medicine-Moving beyond pure genomics, Nat. Med, doi:10.1038/nm.4389
Mahévas, Tran, Roumier, Chabrol, Paule et al., Clinical efficacy of hydroxychloroquine in patients with covid-19 pneumonia who require oxygen: Observational comparative study using routine care data, BMJ, doi:10.1136/bmj.m1844
Menden, Iorio, Garnett, Mcdermott, Benes et al., Machine Learning Prediction of Cancer Cell Sensitivity to Drugs Based on Genomic and Chemical Properties, PLOS ONE, doi:10.1371/journal.pone.0061318
Molina, Delaugerre, Le Goff, Mela-Lima, Ponscarme et al., No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection, Méd. Mal. Infect, doi:10.1016/j.medmal.2020.03.006
Pan, Peto, Karim, Alejandria, Henao-Restrepo et al., Repurposed antiviral drugs for COVID-19-Interim WHO SOLIDARITY trial results, doi:10.1101/2020.10.15.20209817
Pintilie, Analysing and interpreting competing risk data, Stat. Med, doi:10.1002/sim.2655
Richardson, Hirsch, Narasimhan, Crawford, Mcginn et al., Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area, JAMA, doi:10.1001/jama.2020.6775
Rosenberg, Dufort, Udo, Wilberschied, Kumar et al., Association of Treatment With Hydroxychloroquine or Azithromycin With In-Hospital Mortality in Patients With COVID-19 in New York State, JAMA, doi:10.1001/jama.2020.8630
Sarma, Kaur, Kumar, Mahendru, Avti et al., Virological and clinical cure in COVID-19 patients treated with hydroxychloroquine: A systematic review and meta-analysis, J. Med Virol, doi:10.1002/jmv.25898
Schrezenmeier, Dörner, Mechanisms of action of hydroxychloroquine and chloroquine: Implications for rheumatology, Nat. Rev. Rheumatol, doi:10.1038/s41584-020-0372-x
Singh, Singh, Singh, Misra, Hydroxychloroquine in patients with COVID-19: A Systematic Review and meta-analysis, Diabetes Metab. Syndr. Clin. Res. Rev, doi:10.1016/j.dsx.2020.05.017
Skipper, Pastick, Engen, Bangdiwala, Abassi et al., Hydroxychloroquine in Nonhospitalized Adults With Early COVID, Ann. Intern. Med, doi:10.7326/M20-4207
Taccone, Gorham, Vincent, Hydroxychloroquine in the management of critically ill patients with COVID-19: The need for an evidence base, Lancet Respir. Med, doi:10.1016/S2213-2600(20)30172-7
Thémans, Belkhir, Dauby, Yombi, De Greef et al., Population Pharmacokinetics of Hydroxychloroquine in COVID-19 Patients: Implications for Dose Optimization, Eur. J. Drug Metab. Pharmacokinet, doi:10.1007/s13318-020-00648-y
Tunis, Stryer, Clancy, Practical Clinical Trials, JAMA, doi:10.1001/jama.290.12.1624
Vanderweele, Ding, Sensitivity Analysis in Observational Research: Introducing the E-Value, Ann. Intern. Med, doi:10.7326/M16-2607
Voss, Hakimi, Pham, Brannon, Chen et al., Tumor Genetic Analyses of Patients with Metastatic Renal Cell Carcinoma and Extended Benefit from mTOR Inhibitor Therapy, Clin. Cancer Res, doi:10.1158/1078-0432.CCR-13-2345
Wagle, Grabiner, Van Allen, Hodis, Jacobus et al., Activating mTOR Mutations in a Patient with an Extraordinary Response on a Phase I Trial of Everolimus and Pazopanib, Cancer Discov, doi:10.1158/2159-8290.CD-13-0353
Webb, Peltan, Jensen, Hoda, Hunter et al., Clinical criteria for COVID-19-associated hyperinflammatory syndrome: A cohort study, Lancet Rheumatol, doi:10.1016/S2665-9913(20)30343-X
Yao, Ye, Zhang, Cui, Huang et al., In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Clin. Infect. Dis, doi:10.1093/cid/ciaa237
Yazdany, Kim, Use of Hydroxychloroquine and Chloroquine During the COVID-19 Pandemic: What Every Clinician Should Know, Ann. Intern. Med, doi:10.7326/M20-1334
{ 'indexed': {'date-parts': [[2024, 3, 7]], 'date-time': '2024-03-07T12:08:42Z', 'timestamp': 1709813322884}, 'reference-count': 55, 'publisher': 'MDPI AG', 'issue': '12', 'license': [ { 'start': { 'date-parts': [[2020, 11, 26]], 'date-time': '2020-11-26T00:00:00Z', 'timestamp': 1606348800000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0/'}], 'content-domain': {'domain': [], 'crossmark-restriction': False}, 'abstract': '<jats:p>Therapeutic agents for the novel coronavirus disease 2019 (COVID-19) have been ' 'proposed, but evidence supporting their use is limited. A machine learning algorithm was ' 'developed in order to identify a subpopulation of COVID-19 patients for whom ' 'hydroxychloroquine was associated with improved survival; this population might be relevant ' 'for study in a clinical trial. A pragmatic trial was conducted at six United States ' 'hospitals. We enrolled COVID-19 patients that were admitted between 10 March and 4 June 2020. ' 'Treatment was not randomized. The study endpoint was mortality; discharge was a competing ' 'event. Hazard ratios were obtained on the entire population, and on the subpopulation ' 'indicated by the algorithm as suitable for treatment. A total of 290 patients were enrolled. ' 'In the subpopulation that was identified by the algorithm, hydroxychloroquine was associated ' 'with a statistically significant (p = 0.011) increase in survival (adjusted hazard ratio ' '0.29, 95% confidence interval (CI) 0.11–0.75). Adjusted survival among the algorithm ' 'indicated patients was 82.6% in the treated arm and 51.2% in the arm not treated. No ' 'association between treatment and mortality was observed in the general population. A 31% ' 'increase in survival at the end of the study was observed in a population of COVID-19 ' 'patients that were identified by a machine learning algorithm as having a better outcome with ' 'hydroxychloroquine treatment. Precision medicine approaches may be useful in identifying a ' 'subpopulation of COVID-19 patients more likely to be proven to benefit from ' 'hydroxychloroquine treatment in a clinical trial.</jats:p>', 'DOI': '10.3390/jcm9123834', 'type': 'journal-article', 'created': { 'date-parts': [[2020, 11, 27]], 'date-time': '2020-11-27T03:00:33Z', 'timestamp': 1606446033000}, 'page': '3834', 'source': 'Crossref', 'is-referenced-by-count': 8, 'title': 'Is Machine Learning a Better Way to Identify COVID-19 Patients Who Might Benefit from ' 'Hydroxychloroquine Treatment?—The IDENTIFY Trial', 'prefix': '10.3390', 'volume': '9', 'author': [ {'given': 'Hoyt', 'family': 'Burdick', 'sequence': 'first', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-8255-4423', 'authenticated-orcid': False, 'given': 'Carson', 'family': 'Lam', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-3146-2243', 'authenticated-orcid': False, 'given': 'Samson', 'family': 'Mataraso', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-8379-6523', 'authenticated-orcid': False, 'given': 'Anna', 'family': 'Siefkas', 'sequence': 'additional', 'affiliation': []}, {'given': 'Gregory', 'family': 'Braden', 'sequence': 'additional', 'affiliation': []}, {'given': 'R. Phillip', 'family': 'Dellinger', 'sequence': 'additional', 'affiliation': []}, {'given': 'Andrea', 'family': 'McCoy', 'sequence': 'additional', 'affiliation': []}, {'given': 'Jean-Louis', 'family': 'Vincent', 'sequence': 'additional', 'affiliation': []}, {'given': 'Abigail', 'family': 'Green-Saxena', 'sequence': 'additional', 'affiliation': []}, {'given': 'Gina', 'family': 'Barnes', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-7745-3900', 'authenticated-orcid': False, 'given': 'Jana', 'family': 'Hoffman', 'sequence': 'additional', 'affiliation': []}, {'given': 'Jacob', 'family': 'Calvert', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-7614-9299', 'authenticated-orcid': False, 'given': 'Emily', 'family': 'Pellegrini', 'sequence': 'additional', 'affiliation': []}, {'given': 'Ritankar', 'family': 'Das', 'sequence': 'additional', 'affiliation': []}], 'member': '1968', 'published-online': {'date-parts': [[2020, 11, 26]]}, 'reference': [ {'key': 'ref1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.ijantimicag.2020.105924'}, {'key': 'ref2', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.ijantimicag.2020.105938'}, {'key': 'ref3', 'doi-asserted-by': 'publisher', 'DOI': '10.1056/NEJMoa2001282'}, {'key': 'ref4', 'doi-asserted-by': 'publisher', 'DOI': '10.1001/jamanetworkopen.2020.8857'}, {'key': 'ref5', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.ijantimicag.2020.105949'}, {'key': 'ref6', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.jcrc.2020.03.005'}, {'key': 'ref7', 'doi-asserted-by': 'publisher', 'DOI': '10.1056/NEJMoa2012410'}, {'key': 'ref8', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/jm0601856'}, {'key': 'ref9', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/cid/ciaa237'}, {'key': 'ref10', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.medmal.2020.03.006'}, {'key': 'ref11', 'doi-asserted-by': 'publisher', 'DOI': '10.1101/2020.07.15.20151852'}, {'key': 'ref12', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/jmv.25898'}, {'key': 'ref13', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.dsx.2020.05.017'}, {'key': 'ref14', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s11739-020-02505-x'}, {'key': 'ref15', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.ijid.2020.06.099'}, {'key': 'ref16', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.ijantimicag.2020.106144'}, {'key': 'ref17', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.ejim.2020.08.019'}, {'key': 'ref18', 'doi-asserted-by': 'publisher', 'DOI': '10.7326/M16-2607'}, {'key': 'ref19', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S2665-9913(20)30305-2'}, {'key': 'ref20', 'doi-asserted-by': 'publisher', 'DOI': '10.1001/jama.2020.8630'}, {'key': 'ref21', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s00134-020-06202-3'}, {'key': 'ref22', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s13318-020-00648-y'}, {'key': 'ref23', 'doi-asserted-by': 'publisher', 'DOI': '10.1056/NEJMp1500523'}, {'key': 'ref24', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/nm.4389'}, {'key': 'ref25', 'doi-asserted-by': 'publisher', 'DOI': '10.1158/1078-0432.CCR-13-2345'}, {'key': 'ref26', 'doi-asserted-by': 'publisher', 'DOI': '10.1158/2159-8290.CD-13-0353'}, {'key': 'ref27', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.1226344'}, {'key': 'ref28', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/nature09339'}, {'key': 'ref29', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/nature15816'}, {'key': 'ref30'}, {'key': 'ref31', 'doi-asserted-by': 'publisher', 'DOI': '10.1001/jama.290.12.1624'}, {'key': 'ref32', 'doi-asserted-by': 'publisher', 'DOI': '10.1080/01621459.1999.10474144'}, {'key': 'ref33', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S2213-2600(20)30172-7'}, {'key': 'ref34', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41584-020-0372-x'}, {'key': 'ref35', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.ijid.2020.10.032'}, {'key': 'ref36', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.ijid.2020.09.1460'}, {'key': 'ref37'}, {'key': 'ref38'}, {'key': 'ref39'}, {'key': 'ref40', 'doi-asserted-by': 'publisher', 'DOI': '10.7326/L20-1054'}, {'key': 'ref41', 'doi-asserted-by': 'publisher', 'DOI': '10.7326/M20-4207'}, {'key': 'ref42', 'doi-asserted-by': 'publisher', 'DOI': '10.1056/NEJMoa2019014'}, { 'key': 'ref43', 'unstructured': 'Global COVID-19 Prevention Trial of Hydroxychloroquine to ' 'Resumehttp://www.medscape.com/viewarticle/933174.'}, {'key': 'ref44', 'doi-asserted-by': 'publisher', 'DOI': '10.1056/NEJMoa2016638'}, {'key': 'ref45', 'doi-asserted-by': 'publisher', 'DOI': '10.1101/2020.10.15.20209817'}, {'key': 'ref46', 'doi-asserted-by': 'publisher', 'DOI': '10.1136/bmj.m1432'}, {'key': 'ref47', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.jaad.2020.04.031'}, {'key': 'ref48', 'doi-asserted-by': 'publisher', 'DOI': '10.7326/M20-1334'}, {'key': 'ref49', 'doi-asserted-by': 'publisher', 'DOI': '10.4014/jmb.2003.03011'}, {'key': 'ref50', 'doi-asserted-by': 'publisher', 'DOI': '10.1001/jama.2020.6775'}, {'key': 'ref51', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/v12050527'}, {'key': 'ref52', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S2665-9913(20)30343-X'}, {'key': 'ref53', 'doi-asserted-by': 'publisher', 'DOI': '10.1136/bmj.m1844'}, {'key': 'ref54', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.pone.0061318'}, {'key': 'ref55', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/sim.2655'}], 'container-title': 'Journal of Clinical Medicine', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://www.mdpi.com/2077-0383/9/12/3834/pdf', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2020, 11, 27]], 'date-time': '2020-11-27T03:12:00Z', 'timestamp': 1606446720000}, 'score': 1, 'resource': {'primary': {'URL': 'https://www.mdpi.com/2077-0383/9/12/3834'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2020, 11, 26]]}, 'references-count': 55, 'journal-issue': {'issue': '12', 'published-online': {'date-parts': [[2020, 12]]}}, 'alternative-id': ['jcm9123834'], 'URL': 'http://dx.doi.org/10.3390/jcm9123834', 'relation': {}, 'ISSN': ['2077-0383'], 'subject': ['General Medicine'], 'container-title-short': 'JCM', 'published': {'date-parts': [[2020, 11, 26]]}}
Late treatment
is less effective
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit