Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All HCQ studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19hcq.org COVID-19 treatment researchHCQHCQ (more..)
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis    Recent:   

New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19?

Devaux et al., International Journal of Antimicrobial Agents, doi:10.1016/j.ijantimicag.2020.105938
Mar 2020  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
HCQ for COVID-19
1st treatment shown to reduce risk in March 2020
 
*, now known with p < 0.00000000001 from 422 studies, recognized in 42 countries.
No treatment is 100% effective. Protocols combine complementary and synergistic treatments. * >10% efficacy in meta analysis with ≥3 clinical studies.
3,900+ studies for 60+ treatments. c19hcq.org
Discusses mechanisms of CQ interference with the SARS-CoV-2 replication cycle.
Devaux et al., 12 Mar 2020, peer-reviewed, 4 authors.
This PaperHCQAll
New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19?
Christian A Devaux, Jean-Marc Rolain, Philippe Colson, Didier Raoult
International Journal of Antimicrobial Agents, doi:10.1016/j.ijantimicag.2020.105938
Recently, a novel coronavirus (2019-nCoV), officially known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in China. Despite drastic containment measures, the spread of this virus is ongoing. SARS-CoV-2 is the aetiological agent of coronavirus disease 2019 (COVID-19) characterised by pulmonary infection in humans. The effort s of international health authorities have since focused on rapid diagnosis and isolation of patients as well as the search for therapies able to counter the most severe effects of the disease. In the absence of a known efficient therapy and because of the situation of a publichealth emergency, it made sense to investigate the possible effect of chloroquine/hydroxychloroquine against SARS-CoV-2 since this molecule was previously described as a potent inhibitor of most coronaviruses, including SARS-CoV-1. Preliminary trials of chloroquine repurposing in the treatment of COVID-19 in China have been encouraging, leading to several new trials. Here we discuss the possible mechanisms of chloroquine interference with the SARS-CoV-2 replication cycle.
Competing interests: None declared. Ethical approval: Not required.
References
Accapezzato, Visco, Francavilla, Molette, Donato et al., Chloroquine enhances human CD8 + T cell responses against soluble antigens in vivo, J Exp Med
Bakkers, Lang, Feistsma, Hulswit, De Poot et al., Betacoronavirus adaptation to humans involved progressive loss of hemagglutinin-esterase lectin activity, Cell Host Microbe, doi:10.1016/j.chom.2017.02.008
Bernstein, Ocular safety of hydroxychloroquine, Ann Ophthalmol
Bishop, Examination of potential inhibitors of hepatitis A virus uncoating, Intervirology
Blau, Holmes, Human coronavirus HCoV-229E enters susceptible cells via the endocytic pathway
Boelaert, Piette, Sperber, The potential place of chloroquine in the treatment of HIV-1-infected patients, J Clin Virol
Boulos, Rolain, Raoult, Antibiotic susceptibility of Tropheryma whipplei in MRC5 cells, Antimicrob Agents Chemother
Briant, Robert-Hebmann, Acquaviva, Pelchen-Matthews, Marsh et al., The protein tyrosine kinase p56 lck is required for triggering NF-κB activation upon interaction of human immunodeficiency virus type 1 envelope glycoprotein gp120 with cell surface CD4, J Virol
Burkard, Verheije, Wicht, Van Kasteren, Van Kuppeveld et al., Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner, PLoS Pathog
Cassell, Edwards, Brown, Effects of lysosomotropic weak bases on infection of BHK-21 cells by Sindbis virus, J Virol
Chan, Lau, Woo, Tse, Zheng et al., Identification of major histocompatibility complex class I C molecule as an attachment factor that facilitates coronavirus HKU1 spike-mediated infection, J Virol
Collins, HLA class I antigen serves as a receptor for human coronavirus OC43, Immunol Invest
Colson, Rolain, Lagier, Brouqui, Raoult, Chloroquine and hydroxychloroquine as available weapons to fight COVID-19, Int J Antimicrob Agents, doi:10.1016/j.ijantimicag.2020.105932
Cubero, Reguero, Ortega, Restrictive cardiomyopathy caused by chloroquine, Br Heart J
De Lamballerie, Boisson, Reynier, Enault, Charrel et al., On Chikungunya acute infection and chloroquine treatment, Vector Borne Zoonotic Dis, doi:10.1089/vbz.2008.0049
De Wilde, Jochmans, Posthuma, Zevenhoven-Dobbe, Van Nieuwkoop et al., Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture, Antimicrob Agents Chemother, doi:10.1128/AAC.03011-14
Delogu, De Lamballerie, Chikungunya disease and chloroquine treatment, J Med Virol
Delvecchio, Higa, Pezzuto, Valadao, Garcez et al., Chloroquine, an endocytosis blocking agent, inhibits Zika virus infection in different cell models, Viruses, doi:10.3390/v8120322
Diebold, Kaisho, Hemmi, Akira, Reis E Sousa, Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA, Science
Dowall, Bosworth, Watson, Bewley, Taylor et al., Chloroquine inhibited Ebola virus replication in vitro but failed to protect against infection and disease in the in vivo guinea pig model, J Gen Virol
Farias, Machado, De, Junior, De Aquino et al., Chloroquine interferes with dengue-2 virus replication in U937 cells, Microbiol Immunol
Fehr, Perlman, Coronaviruses: an overview of their replication and pathogenesis, Methods Mol Biol, doi:10.1007/978-1-4939-2438-7_1
Ferraris, Moroso, Pernet, Emonet, Rembert et al., Evaluation of Crimean-Congo hemorrhagic fever virus in vitro inhibition by chloroquine and chlorpromazine, two FDA approved molecules, Antiviral Res, doi:10.1016/j.antiviral.2015.03.005
Freiberg, Worthy, Lee, Holbrook, Combined chloroquine and ribavirin treatment does not prevent death in a hamster model of Nipah and Hendra virus infection, J Gen Virol, doi:10.1099/vir.0.017269-0
Fuld, Horwich, Treatment of rheumatoid arthritis with chloroquine, Br Med J, doi:10.1136/bmj.2.5106.1199
Gao, Tian, Yang, Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies, Biosci Trends, doi:10.5582/bst.2020.01047
Garulli, Mario, Sciaraffia, Accapezzato, Barnaba et al., Enhancement of T cell-mediated immune responses to whole inactivated influenza virus by chloroquine treatment in vivo, Vaccine, doi:10.1016/j.vaccine.2013.01.037
Gay, Bernard, Solignat, Chazal, Devaux et al., pH-dependent entry of Chikungunya virus into Aedes albopictus cells, Infect Genet Evol, doi:10.1016/j.meegid.2012.02.003
Glowacka, Bertram, Müller, Allen, Soilleux et al., Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response, J Virol
Glushakova, Lukashevich, Early events in arenavirus replication are sensitive to lysosomotropic compounds, Arch Virol
Graham, Donaldson, Baric, A decade after SARS: strategies to control emerging coronaviruses, Nat Rev Microbiol
Harley, Dasgupta, Wilson, Characterization of herpes simplex viruscontaining organelles by subcellular fractionation: role for organelle acidification in assembly of infectious particles, J Virol
Harrison, Coronavirus puts drug repurposing on the fast track, Nature Biotechnology, doi:10.1038/d41587-020-00003-1
Huang, Dong, Milewska, Qi, Zhu, Human coronavirus HKU1 spike protein uses O -acetylated sialic acid as an attachment receptor determinant and employs hemagglutinin-esterase protein as a receptor-destroying enzyme, J Virol
Huang, Wang, Li, Ren, Zhao et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet, doi:10.1016/S0140-6736(20)30183-5
Jang, Choi, Byun, Jue, Chloroquine inhibits production of TNF-α, IL-1 β and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes, Rheumatology
Jeong, Choi, Jeon, Jue, Chloroquine decreases cell-surface expression of tumour necrosis factor receptors in human histiocytic U-937 cells, Immunology, doi:10.1046/j.0019-2805.2001.01339.x
Jeong, Jue, Chloroquine inhibits processing of tumor necrosis factor in lipopolysaccharide-stimulated RAW 264.7 macrophages, J Immunol
Keyaerts, Li, Vijgen, Rysman, Verbeeck et al., Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice, Antimicrob Agents Chemother
Khan, Santhosh, Tiwari, Rao, Parida, Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against Chikungunya virus in Vero cells, J Med Virol
Klumperman, Locker, Meijer, Horzinek, Geuze et al., Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding, J Virol
Kono, Tatsumi, Imai, Saito, Kuriyama et al., Inhibition of human coronavirus 229E infection in human epithelial lung cells (L132) by chloroquine: involvement of p38 MAPK and ERK, Antiviral Res, doi:10.1016/j.antiviral.2007.10.011
Kouroumalis, Koskinas, Treatment of chronic active hepatitis B (CAH B) with chloroquine: a preliminary report, Ann Acad Med Singapore
Koyama, Uchida, Inhibition of multiplication of herpes simplex virus type 1 by ammonium chloride and chloroquine, Virology
Kronenberger, Vrijsen, Boeyé, Chloroquine induces empty capsid formation during poliovirus eclipse, J Virol
Kwiek, Haystead, Rudolph, Kinetic mechanism of quinone oxidoreductase 2 and its inhibition by the antimalarial quinolines, Biochemistry
Lee, Silverman, Bargman, The role of antimalarial agents in the treatment of SLE and lupus nephritis, Nat Rev Nephrol, doi:10.1038/nrneph.2011.150
Li, Qiao, Zhang, Analysis of angiotensin-converting enzyme 2 (ACE2) from different species sheds some light on cross-species receptor usage of a novel coronavirus 2019-nCoV, J Infect, doi:10.1016/j.jinf.2020.02.013
Mackenzie, Antimalarial drugs for rheumatoid arthritis, Am J Med
Milewska, Zarebski, Nowak, Stozek, Potempa et al., Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells, J Virol
Miller, Antihistaminics, local anesthetics, and other amines as antiviral agents, Proc Natl Acad Sci U S A, doi:10.1073/pnas.78.6.3605
Millet, Whittaker, Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein, Proc Natl Acad Sci U S A
Mizui, Yamashina, Tanida, Takei, Ueno et al., Inhibition of hepatitis C virus replication by chloroquine targeting virus-associated autophagy, J Gastroenterol
Mo, Fisher, A review of treatment modalities for Middle East respiratory syndrome, J Antimicrob Chemother
Olofsson, Kumlin, Dimock, Arnberg, Avian influenza and sialic acid receptors: more than meets the eye?, Lancet Infect Dis
Ooi, Chew, Loh, Chua, In vitro inhibition of human influenza A virus replication by chloroquine, Virol J
Parhizgar, Tahghighi, Introducing new antimalarial analogues of chloroquine and amodiaquine: a narrative review, Iran J Med Sci
Paton, Lee, Xu, Ooi, Cheung et al., Chloroquine for influenza prevention: a randomised, double-blind, placebo controlled trial, Lancet Infect Dis
Perrier, Bonnin, Desmarets, Danneels, Goffard et al., The C-terminal domain of the MERS coronavirus M protein contains a trans-Golgi network localization signal, J Biol Chem
Picot, Peyron, Donadille, Vuillez, Barbe et al., Chloroquine-induced inhibition of the production of TNF, but not of IL-6, is affected by disruption of iron metabolism, Immunology
Porotto, Orefice, Yokoyama, Mungall, Realubit et al., Simulating Henipavirus multicycle replication in a screening assay leads to identification of a promising candidate for therapy, J Virol
Randolph, Winkler, Stollar, Acidotropic amines inhibit proteolytic processing of flavivirus prM protein, Virology, doi:10.1016/0042-6822(90)90099-d
Raoult, Drancourt, Vestris, Bactericidal effect of doxycycline associated with lysosomotropic agents on Coxiella burnetii in P388D1 cells, Antimicrob Agents Chemother, doi:10.1128/aac.34.8.1512
Raoult, Houpikian, Tissot, Riss, Arditi-Djiane et al., Treatment of Q fever endocarditis: comparison of 2 regimens containing doxycycline and ofloxacin or hydroxychloroquine, Arch Intern Med, doi:10.1001/archinte.159.2.167
Ratliff, Estes, Myles, Shirey, Mcmahon, Diagnosis of chloroquine cardiomyopathy by endomyocardial biopsy, N Engl J Med
Rolain, Colson, Raoult, Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infection in the 21st century, Int J Antimicrob Agents
Romanelli, Smith, Hoven, Chloroquine and hydroxychloroquine as inhibitors of human immunodeficiency virus (HIV-1) activity, Curr Pharm Des
Savarino, Boelaert, Cassone, Majori, Cauda, Effects of chloroquine on viral infections: an old drug against today's diseases?, Lancet Infect Dis
Savarino, Gennero, Sperber, Boelaert, The anti-HIV-1 activity of chloroquine, J Clin Virol
Savarino, Lucia, Rastrelli, Rutella, Golotta et al., Anti-HIV effects of chloroquine: inhibition of viral particle glycosylation and synergism with protease inhibitors, J Acquir Immune Defic Syndr
Sharma, Do, Wasko, Anti-malarials: are there benefits beyond mild disease?, Curr Treat Options Rheumatol, doi:10.1007/s40674-016-0036-9
Sharma, Effectiveness of chloroquine and hydroxychloroquine in treating selected patients with sarcoidosis with neurological involvement, Arch Neurol
Shen, Yang, Ye, Liu, Desforges et al., Safe and sensitive antiviral screening platform based on recombinant human coronavirus OC43 expressing the luciferase reporter gene, Antimicrob Agents Chemother, doi:10.1128/AAC.00814-16
Shibata, Aoki, Tsurumi, Sugiura, Nishiyama et al., Mechanism of uncoating of influenza B virus in MDCK cells: action of chloroquine, J Gen Virol, doi:10.1099/0022-1317-64-5-1149
Simmons, Bertram, Glowacka, Steffen, Chaipan et al., Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion, Virology, doi:10.1016/j.virol.2011.02.020
Steiz, Valbracht, Quach, Lotz, Gold sodium thiomalate and chloroquine inhibit cytokine production in monocytic THP-1 cells through distinct transcriptional and posttranslational mechanisms, J Clin Immunol, doi:10.1023/B:JOCI.0000010424.41475.17
Superti, Seganti, Orsi, Divizia, Gabrieli et al., The effect of lipophilic amines on the growth of hepatitis A virus in Frp/3 cells, Arch Virol, doi:10.1007/bf01320970
Tricou, Minh, Van, Lee, Farrar et al., A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults, PLoS Negl Trop Dis, doi:10.1371/journal.pntd.0000785
Tsai, Nara, Kung, Oroszlan, Inhibition of human immunodeficiency virus infectivity by chloroquine, AIDS Res Hum Retroviruses, doi:10.1089/aid.1990.6.481
Tsiang, Superti, Ammonium chloride and chloroquine inhibit rabies virus infection in neuroblastoma cells, Arch Virol
Varki, Sialic acids as ligands in recognition phenomena, FASEB J
Vincent, Bergeron, Benjannet, Erickson, Rollin et al., Chloroquine is a potent inhibitor of SARS coronavirus infection and spread, Virol J, doi:10.1186/1743-422X-2-69
Vlasak, Luytjes, Spaan, Palese, Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses, Proc Natl Acad Sci U S A
Wang, Cao, Zhang, Yang, Liu et al., Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res, doi:10.1038/s41422-020-0282-0
Wang, Cheng, Increasing host cellular receptor-angiotensin-converting enzyme 2 (ACE2) expression by coronavirus may facilitate 2019-nCoV infection, bioRxiv, doi:10.1101/2020.02.24.963348
Wang, Yang, Liu, Guo, Zhang et al., SARS coronavirus entry into host cells through a novel clathrin-and caveolae-independent endocytic pathway, Cell Res, doi:10.1038/cr.2008.15
Weber, Levitz, Chloroquine interferes with lipopolysaccharide-induced TNF-α gene expression by a nonlysosomotropic mechanism, J Immunol, doi:10.4049/jimmunol.165.3.1534
Wellems, Plowe, Chloroquine-resistant malaria, J Infect Dis
White, Pukrittayakamee, Hien, Faiz, Mokuolu et al., Malaria, Lancet, doi:10.1016/S0140-6736(13)60024-0
Winzeler, Malaria research in the post-genomic era, Nature
Wozniacka, Lesiak, Narbutt, Mccauliffe, Sysa-Jedrzejowska, Chloroquine treatment influences proinflammatory cytokine levels in systemic lupus erythematosus patients, Lupus
Yan, Zou, Sun, Li, Xu et al., Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model, Cell Res, doi:10.1038/cr.2012.165
Yang, Huang, Ganesh, Leung, Kong et al., pHdependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN, J Virol, doi:10.1128/JVI.78.11.5642-5650.2004
Zeng, Langereis, Van Vliet, Huizinga, De Groot, Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution, Proc Natl Acad Sci U S A
Zhao, Guo, Liu, Cuconati, Chang et al., Interferon induction of IFITM proteins promotes infection by human coronavirus OC43, Proc Natl Acad Sci U S A
Zhao, Zhao, Wang, Zhou, Ma et al., Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov, bioRxiv, doi:10.1101/2020.01.26.919985
Zhou, Yang, Wang, Hu, Zhang et al., Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin, bioRxiv, doi:10.1101/2020.01.22.914952
Zhu, Ertel, Ayala, Morrison, Perrin et al., Chloroquine inhibits macrophage tumour necrosis factor-α mRNA transcription, Immunology
Zhu, Zhang, Li, Yang, Song, A novel coronavirus from patients with pneumonia in China, 2019, N Engl J Med
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit