Quantifying treatment effects of hydroxychloroquine and azithromycin for COVID-19: a secondary analysis of an open label non-randomized clinical trial
Andrew A Lover
doi:10.1101/2020.03.22.20040949
The author stands by all analytical and statistical aspects of this preprint. However, subsequent to this analysis, further details of the original study have been released-with major uncertainties in study design, reporting, choice of endpoints, and most importantly, data integrity [1, 2] . Therefore, all results from the original study should be viewed with considerable skepticism.
References
Bik, Thoughts on the Gautret et al. paper about Hydroxychloroquine and Azithromycin treatment of COVID-19 infections
Coveney, Firthlogit: Stata module to calculate bias reduction in logistic regression
Gautret, Lagier, Parola, Van Thuan, Hoang et al., Hydroxychloroquine and Azithromycin as a treatment of COVID-19: preliminary results of an open-label non-randomized clinical trial, medRxiv
Ian R White, Horton, Carpenter, Pocock, Strategy for intention to treat analysis in randomised trials with missing outcome data, Bmj
Lorenc, Oliver, Adverse effects of public health interventions: a conceptual framework, J Epidemiol Community Health
Mcnutt, Wu, Xue, Hafner, Estimating the relative risk in cohort studies and clinical trials of common outcomes, American journal of epidemiology
Michael A Johansson, Reich, Meyers, Lipsitch, Preprints: An underutilized mechanism to accelerate outbreak science, PLoS medicine
Nakagawa, Innes, Cuthill, Effect size, confidence interval and statistical significance: a practical guide for biologists, Biological reviews
Pubpeer, Pubpeer: Hydroxychloroquine and Azithromycin as a treatment of COVID-19: preliminary results of an open-label non-randomized clinical trial
Rivers, Chretien, Riley, Pavlin, Woodward et al., Using "outbreak science" to strengthen the use of models during epidemics, Nature Communications
Royston, Parmar, Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects, Statistics in medicine
Sandeep, Gupta, Intention-to-treat concept: a review, Perspectives in clinical research
Tjur, Coefficients of determination in logistic regression models-a new proposal: The coefficient of discrimination, The American Statistician
{ 'institution': [{'name': 'medRxiv'}],
'indexed': {'date-parts': [[2023, 6, 23]], 'date-time': '2023-06-23T14:10:26Z', 'timestamp': 1687529426946},
'posted': {'date-parts': [[2020, 3, 27]]},
'group-title': 'Epidemiology',
'reference-count': 14,
'publisher': 'Cold Spring Harbor Laboratory',
'content-domain': {'domain': [], 'crossmark-restriction': False},
'accepted': {'date-parts': [[2020, 4, 10]]},
'abstract': '<jats:title>A<jats:sc>bstract</jats:sc></jats:title><jats:p>Human infections with a novel '
'coronavirus (SARS-CoV-2) were first identified via syndromic surveillance in December of 2019 '
'in Wuhan China. Since identification, infections (coronavirus disease-2019; COVID-19) caused '
'by this novel pathogen have spread globally, with more than 250,000 confirmed cases as of '
'March 21, 2020. An open-label clinical trial has just concluded, suggesting improved '
'resolution of viremia with use of two existing therapies: hydroxychloroquine (HCQ) as '
'monotherapy, and in combination with azithromycin (HCQ-AZ). [3, 4].</jats:p><jats:p>The '
'results of this important trial have major implications for global policy in the rapid '
'scale-up and response to this pandemic. The authors present results with p-values for '
'differences in proportions between the study arms, but their analysis is not able to provide '
'effect size estimates.</jats:p><jats:p>To address this gap, more modern analytical methods '
'including survival models, have been applied to these data, and show modest to no impact of '
'HCQ treatment, with more significant effects from the HCQ-AZ combination, potentially '
'suggesting a role for co-infections in COVID-19 pathogenesis.</jats:p><jats:p>The trial of '
'Gautret and colleagues, with consideration of the effect sizes, and p-values from multiple '
'models, does not provide sufficient evidence to support wide-scale rollout of HCQ monotherapy '
'for the treatment of COVID-19; larger randomized studies should be considered. These data '
'also suggest further randomized-controlled studies of HCQ-AZ combination therapy should be '
'undertaken.</jats:p>',
'DOI': '10.1101/2020.03.22.20040949',
'type': 'posted-content',
'created': {'date-parts': [[2020, 3, 27]], 'date-time': '2020-03-27T17:55:42Z', 'timestamp': 1585331742000},
'source': 'Crossref',
'is-referenced-by-count': 14,
'title': 'Quantifying treatment effects of hydroxychloroquine and azithromycin for COVID-19: a secondary '
'analysis of an open label non-randomized clinical trial',
'prefix': '10.1101',
'author': [ { 'ORCID': 'http://orcid.org/0000-0002-2181-3559',
'authenticated-orcid': False,
'given': 'Andrew A.',
'family': 'Lover',
'sequence': 'first',
'affiliation': []}],
'member': '246',
'reference': [ { 'key': '2020112112000956000_2020.03.22.20040949v2.1',
'unstructured': 'Elisabeth Bik. Thoughts on the Gautret et al. paper about '
'Hydroxychloroquine and Azithromycin treatment of COVID-19 infections. '
'Technical report, March 2020. Library Catalog: '
'scienceintegritydigest.com.'},
{ 'key': '2020112112000956000_2020.03.22.20040949v2.2',
'unstructured': 'Pubpeer. Pubpeer: Hydroxychloroquine and Azithromycin as a treatment of '
'COVID-19: preliminary results of an open-label non-randomized clinical '
'trial, March 2020.'},
{ 'key': '2020112112000956000_2020.03.22.20040949v2.3',
'unstructured': 'Hydroxychloroquine and azithromycin as a treatment of COVID-19 – IHU. '
'Library Catalog: www.mediterranee-infection.com.'},
{'key': '2020112112000956000_2020.03.22.20040949v2.4'},
{ 'key': '2020112112000956000_2020.03.22.20040949v2.5',
'doi-asserted-by': 'publisher',
'DOI': '10.1136/bmj.d40'},
{ 'key': '2020112112000956000_2020.03.22.20040949v2.6',
'doi-asserted-by': 'publisher',
'DOI': '10.4103/2229-3485.83221'},
{ 'key': '2020112112000956000_2020.03.22.20040949v2.7',
'doi-asserted-by': 'publisher',
'DOI': '10.1111/j.1469-185X.2007.00027.x'},
{ 'key': '2020112112000956000_2020.03.22.20040949v2.8',
'doi-asserted-by': 'publisher',
'DOI': '10.1198/tast.2009.08210'},
{ 'key': '2020112112000956000_2020.03.22.20040949v2.9',
'doi-asserted-by': 'publisher',
'DOI': '10.1093/aje/kwg074'},
{ 'key': '2020112112000956000_2020.03.22.20040949v2.10',
'doi-asserted-by': 'publisher',
'DOI': '10.1002/sim.1203'},
{ 'key': '2020112112000956000_2020.03.22.20040949v2.11',
'unstructured': 'Joseph Coveney . Firthlogit: Stata module to calculate bias reduction in '
'logistic regression. 2015.'},
{ 'issue': '1',
'key': '2020112112000956000_2020.03.22.20040949v2.12',
'first-page': '1',
'article-title': 'Using “outbreak science” to strengthen the use of models during '
'epidemics',
'volume': '10',
'year': '2019',
'journal-title': 'Nature Communications'},
{ 'key': '2020112112000956000_2020.03.22.20040949v2.13',
'doi-asserted-by': 'publisher',
'DOI': '10.1136/jech-2013-203118'},
{ 'key': '2020112112000956000_2020.03.22.20040949v2.14',
'doi-asserted-by': 'crossref',
'unstructured': 'Michael A Johansson , Nicholas G Reich , Lauren Ancel Meyers , and Marc '
'Lipsitch . Preprints: An underutilized mechanism to accelerate outbreak '
'science. PLoS medicine, 15(4), 2018.',
'DOI': '10.1371/journal.pmed.1002549'}],
'container-title': [],
'original-title': [],
'link': [ { 'URL': 'https://syndication.highwire.org/content/doi/10.1101/2020.03.22.20040949',
'content-type': 'unspecified',
'content-version': 'vor',
'intended-application': 'similarity-checking'}],
'deposited': { 'date-parts': [[2020, 11, 21]],
'date-time': '2020-11-21T20:01:13Z',
'timestamp': 1605988873000},
'score': 1,
'resource': {'primary': {'URL': 'http://medrxiv.org/lookup/doi/10.1101/2020.03.22.20040949'}},
'subtitle': [],
'short-title': [],
'issued': {'date-parts': [[2020, 3, 27]]},
'references-count': 14,
'URL': 'http://dx.doi.org/10.1101/2020.03.22.20040949',
'relation': {},
'subject': [],
'published': {'date-parts': [[2020, 3, 27]]},
'subtype': 'preprint'}