Hyperglycemia, hydroxychloroquine, and the COVID‐19 pandemic
MD Adam Brufsky
Journal of Medical Virology, doi:10.1002/jmv.25887
Coronavirus disease-2019 (COVID-19) infection and its severity can be explained by the concentration of glycosylated severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) viral particles in the lung epithelium, the concentration of glycosylated angiotensin-converting enzyme receptor 2 (ACE2) in the lung epithelium, and the degree and control of the pulmonary immune response to the SARS-CoV-2 spike protein at approximately day 8 to 10 after symptom onset, which may be related to both. Binding of ACE2 by SARS-CoV-2 in COVID-19 also suggests that prolonged uncontrolled hyperglycemia, and not just a history of diabetes mellitus, may be important in the pathogenesis of the disease. It is tempting to consider that the same mechanism acts in COVID-19 as in SARS, where an overactive macrophage M1 inflammatory response, as neutralizing antibodies to the SARS-CoV-2 spike protein form at day 7 to 10, results in acute respiratory distress syndrome (ARDS) in susceptible patients. It also allows consideration of agents, such as hydroxychloroquine, which may interfere with this overly brisk macrophage inflammatory response and perhaps influence the course of the disease, in particular, those that blunt but do not completely abrogate the M1 to M2 balance in macrophage polarization, as well as viral load, which in SARS appears to be temporally related to the onset of ARDS. antibody-mediated cell-mediated cytotoxicity, antiviral agents, SARS coronavirus
| ROLE OF THE ACE2 RECEPTOR IN COVID-19 INFECTION We are all struggling to understand the human catastrophe of the coronavirus disease-2019 (COVID-19) epidemic. As of April 12, 2020, there were 557043 cases of documented COVID-19 infection in the United States, and 21952 deaths. 1 Our economy except for limited sectors has come to a complete halt as we practice physical distancing to try to mitigate the effects of the pandemic. In the 10 weeks since COVID-19 began to accelerate, there has been a flurry of information from corners expected and unexpected to help us with this understanding. Rapid publication of peerreviewed data has defined the possible risk factors for COVID-19, its clinical course, and its possible epidemiology. In this unusual time of a public health emergency, numerous non-peer-reviewed manuscripts have been uploaded to preprint servers, and their unreviewed data and conclusions must be evaluated in this spirit. Nevertheless, data both published and in preprint form point to a tantalizing hypothesis: that COVID-19 infection and its severity can be explained by the concentration of glycosylated severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) viral particles in the lung epithelium, the concentration of glycosylated angiotensin-converting enzyme
CONFLICT OF INTERESTS The authors declare that there are no conflict of interests.
ORCID
Adam Brufsky http://orcid.org/0000-0001-8080-7960
References
Aao-Hns, Anosmia, hyposmia, and dysgeusia symptoms of coronavirus disease
Andreani, Bideau, Duflot, In vitro testing of hydroxychloroquine and azithromycin on SARS-CoV-2 shows 1 synergistic effect 2
Bass, Wilkinson, Rankin, An overview of technical considerations for Western blotting applications to physiological research, Scand J Med Sci Sports,
doi:10.1111/sms.12702
Bhatraju, Ghassemieh, Nichols, Covid-19 incritically ill patients in the seattle region-case series, N Engl J Med,
doi:10.1056/NEJMoa2004500
Bornstein, Dalan, Hopkins, Mingrone, Boehm, Endocrine and metabolic link to coronavirus infection, Nat Rev Endocrinol,
doi:10.1038/s41574-020-0353-9
Brosnihan, Hodgin, Smithies, Maeda, Gallagher, Tissuespecific regulation of ACE/ACE2 and AT1/AT2 receptor gene expression by oestrogen in apolipoprotein E/oestrogen receptor-α knock-out mice, Exp Physiol,
doi:10.1113/expphysiol.2007.041806
Chen, Hu, Zhang, Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial, medRxiv,
doi:10.1101/2020.03.22.20040758
Chen, Jiang, Xia, Individual variation of the SARS-CoV2 receptor ACE2 gene expression and regulation
Cheng, Wang, Wang, Organ-protective effect of angiotensinconverting enzyme 2 and its effect on the prognosis of COVID-19, J Med Virol,
doi:10.1002/jmv.25785
Gautret, Lagier, Parola, Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial, Int J Antimicrob Agents,
doi:10.1016/j.ijantimicag.2020.105949
Hhs, Government gain-of-function deliberative process and research funding pause on selected gain-of-function research involving influenza, MERS, and SARS viruses
Keselman, Fang, White, Heller, Estrogen signaling contributes to sex differences in macrophage polarization during asthma, J Immunol,
doi:10.4049/jimmunol.1601975
Lee, Hui, Wu, A major outbreak of severe acute respiratory syndrome in Hong Kong, N Engl J Med,
doi:10.1056/NEJMoa030685
Letko, Marzi, Munster, Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses, Nat Microbiol,
doi:10.1038/s41564-020-0688-y
Li, Moore, Vasilieva, Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature,
doi:10.1038/nature02145
Liu, Wei, Lin, Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection, JCI Insight,
doi:10.1172/jci.insight.123158
Peiris, Chu, Cheng, Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study, Lancet,
doi:10.1016/S0140-6736(03)13412-5
Rekedal, Massarotti, Garg, Changes in glycosylated hemoglobin after initiation of hydroxychloroquine or methotrexate treatment in diabetes patients with rheumatic diseases, Arthritis Rheum,
doi:10.1002/art.27703
Roca-Ho, Riera, Palau, Pascual, Soler, Characterization of ACE and ACE2 expression within different organs of the NOD mouse, Int J Mol Sci,
doi:10.3390/ijms18030563
Selvin, Zhu, Brancati, Elevated A1C in adults without a history of diabetes in the U, S. Diabetes Care,
doi:10.2337/dc08-1699
Shiratori, Feinweber, Luckhardt, An in vitro test system for compounds that modulate human inflammatory macrophage polarization, Eur J Pharmacol,
doi:10.1016/j.ejphar.2018.06.017
Villa, Rizzi, Vegeto, Ciana, Estrogen accelerates the resolution of inflammation in macrophagic cells, Sci Rep,
doi:10.1038/srep15224
Vincent, Bergeron, Benjannet, Chloroquine is a potent inhibitor of SARS coronavirus infection and spread, Virol J,
doi:10.1186/1743-422X-2-69
Walls, Park, Tortorici, Wall, Mcguire et al., Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein, Cell,
doi:10.1016/j.cell.2020.02.058
Wan, Shang, Graham, Baric, Li, Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. Gallagher T, J Virol,
doi:10.1128/JVI.00127-20
Wang, Hu, Hu, Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China, JAMA,
doi:10.1001/jama.2020.1585
Xu, Zhong, Deng, High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa, Int J Oral Sci,
doi:10.1038/s41368-020-0074-x
Yang, Lin, Ji, Guo, Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes, Acta Diabetol,
doi:10.1007/s00592-009-0109-4
Zhang, Zhang, Yu, Antibody responses against SARS coronavirus are correlated with disease outcome of infected individuals, J Med Virol,
doi:10.1002/jmv.20499
Zhou, Yu, Du, Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study, Lancet,
doi:10.1016/S0140-6736(20)30566-3
{ 'indexed': {'date-parts': [[2024, 5, 14]], 'date-time': '2024-05-14T20:38:29Z', 'timestamp': 1715719109103},
'reference-count': 41,
'publisher': 'Wiley',
'issue': '7',
'license': [ { 'start': { 'date-parts': [[2020, 4, 27]],
'date-time': '2020-04-27T00:00:00Z',
'timestamp': 1587945600000},
'content-version': 'vor',
'delay-in-days': 0,
'URL': 'http://creativecommons.org/licenses/by/4.0/'}],
'content-domain': {'domain': ['onlinelibrary.wiley.com'], 'crossmark-restriction': True},
'published-print': {'date-parts': [[2020, 7]]},
'abstract': '<jats:title>Abstract</jats:title><jats:p>Coronavirus disease‐2019 (COVID‐19)\xa0infection and '
'its severity can be explained by the concentration of glycosylated severe acute respiratory '
'syndrome‐coronavirus 2 (SARS‐CoV‐2) viral particles in the lung epithelium, the concentration '
'of glycosylated angiotensin‐converting enzyme receptor 2 (ACE2) in the lung epithelium, and '
'the degree and control of the pulmonary immune response to the SARS‐CoV‐2 spike protein at '
'approximately day 8 to 10 after symptom onset, which may be related to both. Binding of ACE2 '
'by SARS‐CoV‐2 in COVID‐19 also suggests that prolonged uncontrolled hyperglycemia, and not '
'just a history of diabetes mellitus, may be important in the pathogenesis of the disease. It '
'is tempting to consider that the same mechanism acts in COVID‐19 as in SARS, where an '
'overactive macrophage M1 inflammatory response, as neutralizing antibodies to the SARS‐CoV‐2 '
'spike protein form at day 7 to 10, results in acute respiratory distress syndrome (ARDS) in '
'susceptible patients. It also allows consideration of agents, such as hydroxychloroquine, '
'which may interfere with this overly brisk macrophage inflammatory response and perhaps '
'influence the course of the disease, in particular, those that blunt but do not completely '
'abrogate the M1 to M2 balance in macrophage polarization, as well as viral load, which in '
'SARS appears to be temporally related to the onset of ARDS.</jats:p>',
'DOI': '10.1002/jmv.25887',
'type': 'journal-article',
'created': {'date-parts': [[2020, 4, 15]], 'date-time': '2020-04-15T15:52:26Z', 'timestamp': 1586965946000},
'page': '770-775',
'update-policy': 'http://dx.doi.org/10.1002/crossmark_policy',
'source': 'Crossref',
'is-referenced-by-count': 141,
'title': 'Hyperglycemia, hydroxychloroquine, and the COVID‐19 pandemic',
'prefix': '10.1002',
'volume': '92',
'author': [ { 'ORCID': 'http://orcid.org/0000-0001-8080-7960',
'authenticated-orcid': False,
'given': 'Adam',
'family': 'Brufsky',
'sequence': 'first',
'affiliation': [ { 'name': "UPMC Hillman Cancer Center, Magee Women's Hospital University of "
'Pittsburgh School of Medicine Pittsburgh Pennsylvania'}]}],
'member': '311',
'published-online': {'date-parts': [[2020, 4, 27]]},
'reference': [ { 'key': 'e_1_2_7_2_1',
'unstructured': 'Coronavirus Update (Live): 1 288 504 cases and 70 569 deaths from '
'COVID‐19 virus '
'outbreak—Worldometer.https://www.worldometers.info/coronavirus/#countries. '
'Accessed April 12 2020.'},
{ 'key': 'e_1_2_7_3_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1146/annurev-virology-110615-042301'},
{'key': 'e_1_2_7_4_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1056/NEJMoa030685'},
{'key': 'e_1_2_7_5_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/nature02145'},
{'key': 'e_1_2_7_6_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.02615-14'},
{'key': 'e_1_2_7_7_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.00127-20'},
{'key': 'e_1_2_7_8_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41564-020-0688-y'},
{'key': 'e_1_2_7_9_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.abb2507'},
{'key': 'e_1_2_7_10_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cell.2020.02.058'},
{ 'key': 'e_1_2_7_11_1',
'unstructured': 'AAO‐HNS: Anosmia hyposmia and dysgeusia symptoms of coronavirus '
'disease.American Academy of Otolaryngology‐Head and Neck '
'Surgery.https://www.entnet.org/content/aao-hns-anosmia-hyposmia-and-dysgeusia-symptoms-coronavirus-disease. '
'Accessed March 22 2020.'},
{'key': 'e_1_2_7_12_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41368-020-0074-x'},
{ 'key': 'e_1_2_7_13_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1111/j.1464-5491.2006.01861.x'},
{'key': 'e_1_2_7_14_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s00592-009-0109-4'},
{'key': 'e_1_2_7_15_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1056/NEJMoa2002032'},
{'key': 'e_1_2_7_16_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1001/jama.2020.1585'},
{'key': 'e_1_2_7_17_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1056/NEJMoa2004500'},
{ 'key': 'e_1_2_7_18_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/S0140-6736(20)30566-3'},
{'key': 'e_1_2_7_19_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/ijms18030563'},
{ 'key': 'e_1_2_7_20_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/S0140-6736(20)30317-2'},
{'key': 'e_1_2_7_21_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41574-020-0353-9'},
{'key': 'e_1_2_7_22_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/jmv.25785'},
{ 'key': 'e_1_2_7_23_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1113/expphysiol.2007.041806'},
{ 'key': 'e_1_2_7_24_1',
'doi-asserted-by': 'crossref',
'unstructured': 'ChenJ JiangQ XiaX et al.Individual variation of the SARS‐CoV2 receptor '
'ACE2 gene expression and regulation.March '
'2020.https://www.preprints.org/manuscript/202003.0191/v1. Accessed April '
'12 2020.',
'DOI': '10.1111/acel.13168'},
{'key': 'e_1_2_7_25_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1111/sms.12702'},
{'key': 'e_1_2_7_26_1', 'doi-asserted-by': 'publisher', 'DOI': '10.2337/dc08-1699'},
{ 'key': 'e_1_2_7_27_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/S0140-6736(03)13412-5'},
{'key': 'e_1_2_7_28_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/jmv.20499'},
{ 'key': 'e_1_2_7_29_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/S1473-3099(20)30232-2'},
{ 'key': 'e_1_2_7_30_1',
'unstructured': 'HHS.U.S. Government gain‐of‐function deliberative process and research '
'funding pause on selected gain‐of‐function research involving influenza '
'MERS and SARS viruses. October 17 2014.'},
{'key': 'e_1_2_7_31_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1172/jci.insight.123158'},
{ 'key': 'e_1_2_7_32_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1056/NEJM200005043421806'},
{'key': 'e_1_2_7_33_1', 'doi-asserted-by': 'publisher', 'DOI': '10.4049/jimmunol.1601975'},
{'key': 'e_1_2_7_34_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/srep15224'},
{ 'key': 'e_1_2_7_35_1',
'unstructured': 'Concordia Phamaceuticals Inc. PLAQUENIL(hydroxychloroquine sulfate) '
'[package insert].U.S. Food and Drug Administration '
'website.https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/009768s037s045s047lbl.pdf. '
'Revised January 2017. Accessed on April 6 2017.'},
{ 'key': 'e_1_2_7_36_1',
'unstructured': 'AndreaniJ Le BideauM DuflotI et al.In vitro testing of '
'hydroxychloroquine and azithromycin on SARS‐CoV‐2 shows 1 synergistic '
'effect '
'2.https://www.mediterranee-infection.com/wp-content/uploads/2020/03/Andreani-et-al.-Pre-print-V2.pdf. '
'Accessed April 9 2020.'},
{'key': 'e_1_2_7_37_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/1743-422X-2-69'},
{ 'key': 'e_1_2_7_38_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/S1473-3099(06)70361-9'},
{ 'key': 'e_1_2_7_39_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.ijantimicag.2020.105949'},
{ 'key': 'e_1_2_7_40_1',
'article-title': 'Efficacy of hydroxychloroquine in patients with COVID‐19: results of a '
'randomized clinical trial',
'author': 'Chen Z',
'year': '2020',
'journal-title': 'medRxiv'},
{'key': 'e_1_2_7_41_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/art.27703'},
{ 'key': 'e_1_2_7_42_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.ejphar.2018.06.017'}],
'container-title': 'Journal of Medical Virology',
'original-title': [],
'language': 'en',
'link': [ { 'URL': 'https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fjmv.25887',
'content-type': 'application/pdf',
'content-version': 'vor',
'intended-application': 'text-mining'},
{ 'URL': 'https://onlinelibrary.wiley.com/doi/pdf/10.1002/jmv.25887',
'content-type': 'application/pdf',
'content-version': 'vor',
'intended-application': 'text-mining'},
{ 'URL': 'https://onlinelibrary.wiley.com/doi/full-xml/10.1002/jmv.25887',
'content-type': 'application/xml',
'content-version': 'vor',
'intended-application': 'text-mining'},
{ 'URL': 'https://onlinelibrary.wiley.com/doi/pdf/10.1002/jmv.25887',
'content-type': 'unspecified',
'content-version': 'vor',
'intended-application': 'similarity-checking'}],
'deposited': { 'date-parts': [[2023, 9, 6]],
'date-time': '2023-09-06T01:25:12Z',
'timestamp': 1693963512000},
'score': 1,
'resource': {'primary': {'URL': 'https://onlinelibrary.wiley.com/doi/10.1002/jmv.25887'}},
'subtitle': [],
'short-title': [],
'issued': {'date-parts': [[2020, 4, 27]]},
'references-count': 41,
'journal-issue': {'issue': '7', 'published-print': {'date-parts': [[2020, 7]]}},
'alternative-id': ['10.1002/jmv.25887'],
'URL': 'http://dx.doi.org/10.1002/jmv.25887',
'relation': {},
'ISSN': ['0146-6615', '1096-9071'],
'subject': [],
'container-title-short': 'Journal of Medical Virology',
'published': {'date-parts': [[2020, 4, 27]]},
'assertion': [ { 'value': '2020-04-10',
'order': 0,
'name': 'received',
'label': 'Received',
'group': {'name': 'publication_history', 'label': 'Publication History'}},
{ 'value': '2020-04-13',
'order': 1,
'name': 'accepted',
'label': 'Accepted',
'group': {'name': 'publication_history', 'label': 'Publication History'}},
{ 'value': '2020-04-27',
'order': 2,
'name': 'published',
'label': 'Published',
'group': {'name': 'publication_history', 'label': 'Publication History'}}]}