Conv. Plasma
Nigella Sativa

All HCQ studies
Meta analysis
study COVID-19 treatment researchHCQHCQ (more..)
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis    Recent:   
0 0.5 1 1.5 2+ Mortality -57% Improvement Relative Risk Ventilation -115% 9-point scale clinical status -147% HCQ  Réa-Neto et al.  LATE TREATMENT  RCT Is late treatment with HCQ beneficial for COVID-19? RCT 105 patients in Brazil (April - August 2020) Higher ventilation (p=0.03) and worse recovery (p=0.02) Réa-Neto et al., Scientific Reports, Apr 2021 Favors HCQ Favors control

An open-label randomized controlled trial evaluating the efficacy of chloroquine/hydroxychloroquine in severe COVID-19 patients

Réa-Neto et al., Scientific Reports, doi:10.1038/s41598-021-88509-9, NCT04420247
Apr 2021  
  Source   PDF   All   Meta
HCQ for COVID-19
1st treatment shown to reduce risk in March 2020
*, now known with p < 0.00000000001 from 421 studies, recognized in 42 countries.
No treatment is 100% effective. Protocols combine complementary and synergistic treatments. * >10% efficacy in meta analysis with ≥3 clinical studies.
3,800+ studies for 60+ treatments.
Early terminated very late stage (99% on oxygen, 81% in ICU, 18% on mechanical ventilation at baseline) RCT with 24 CQ patients, 29 HCQ, and 52 control patients, showing worse clinical outcomes with treatment. NCT04420247 (history).
risk of death, 57.0% higher, RR 1.57, p = 0.20, treatment 16 of 53 (30.2%), control 10 of 52 (19.2%).
risk of mechanical ventilation, 115.0% higher, RR 2.15, p = 0.03, treatment 53, control 52.
9-point scale clinical status, 147.0% higher, OR 2.47, p = 0.02, treatment 53, control 52, RR approximated with OR.
Effect extraction follows pre-specified rules prioritizing more serious outcomes. Submit updates
Réa-Neto et al., 27 Apr 2021, Randomized Controlled Trial, Brazil, peer-reviewed, 6 authors, study period 16 April, 2020 - 6 August, 2020, average treatment delay 8.0 days, trial NCT04420247 (history).
This PaperHCQAll
An open-label randomized controlled trial evaluating the efficacy of chloroquine/hydroxychloroquine in severe COVID-19 patients
Álvaro Réa-Neto, Rafaella Stradiotto Bernardelli, Bruna Martins Dzivielevski Câmara, Fernanda Baeumle Reese, Marcos Vinicius Oliveira Queiroga, Mirella Cristine Oliveira
Scientific Reports, doi:10.1038/s41598-021-88509-9
Despite several studies designed to evaluate the efficacy of chloroquine and hydroxychloroquine in the treatment of coronavirus disease 2019 (COVID-19), there is still doubt about the effects of these drugs, especially in patients with severe forms of the disease. This randomized, open-label, controlled, phase III trial assessed the efficacy of chloroquine or hydroxychloroquine for five days in combination with standard care compared to standard care alone in patients hospitalized with severe COVID-19. Chloroquine 450 mg BID on day 1 and 450 mg once daily from days 2 to 5 or hydroxychloroquine 400 mg BID on day 1 and 400 mg once daily from days 2 to 5 were administered in the intervention group. Patients were enrolled from April 16 to August 06, 2020, in 6 hospitals in southern Brazil. The primary outcome was the clinical status measured on day 14 after randomization with a 9-point ordinal scale. The main secondary outcomes were all-cause mortality; invasive mechanical ventilation use; the incidence of acute renal dysfunction in 28 days; and the clinical status of patients on days 5, 7, 10 and 28. All patients with a positive RT-PCR result for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were analyzed (modified intention to treat (mITT) population). Arrythmias and cardiovascular complications were assessed as safety outcomes. A total of 105 patients were enrolled and followed for 28 days. The trial was stopped before reaching the planned sample size due to harmful effects. Patients in the intervention group had a worse clinical outcome on the 14th day (odds ratio (OR) 2.45 [1.17 to 4.93], p = 0.016) and on the 28th day (OR 2.47 [1.15 to 5.30], p = 0.020). Moreover, the intervention group had higher incidences of invasive mechanical ventilation use (risk ratio (RR) 2.15 [1.05 to 4.40], p = 0.030) and severe renal dysfunction (KDIGO stage 3) (RR 2.24 [1.01 to 4.99], p = 0.042) until the 28th day of follow-up. No significant arrythmia was noted. In patients with severe COVID-19, the use of chloroquine/hydroxychloroquine added to standard treatment resulted in a significant worsening of clinical status, an increased risk of renal dysfunction and an increased need for invasive mechanical ventilation. Trial Registration:, NCT04420247. Registered 09 June 2020-Retrospectively registered, https:// www. clini caltr ials. gov/ ct2/ show/ study/ NCT04 420247. The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19), has already infected tens of millions of people around the world and killed more than a million people (approximately 3%) 1 . Patients with risk factors or severe forms of COVID-19 have more than a 30% chance of dying. Many antiviral or anti-inflammatory drugs have been studied to find a way to control the poor outcomes of COVID-19 2 . Some drugs have demonstrated in vitro activity against SARS-CoV-2 and potential clinical benefits in small..
Author contributions All authors have approved the submitted version and agreed to be personally accountable for their own contributions and to ensure that questions related to the accuracy or integrity of any part of the work, even those in which the author was not personally involved, are appropriately investigated and resolved and that the resolution is documented in the literature. Competing interests The authors declare no competing interests. Additional information Supplementary Information The online version contains supplementary material available at https:// doi. org/ 10. 1038/ s41598-021-88509-9. Correspondence and requests for materials should be addressed to Á.R.-N. Reprints and permissions information is available at Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abd-Elsalam, Hydroxychloroquine in the treatment of COVID-19: A multicenter randomized controlled study, Am. J. Trop. Med. Hyg, doi:10.4269/ajtmh.20-0873
Alhazzani, Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19), Intensive Care Med
Beigel, Remdesivir for the treatment of Covid-19: Final report, N. Engl. J. Med, doi:10.1056/NEJMoa2007764
Berlin, Gulick, Martinez, Severe Covid-19, N. Engl. J. Med
Borba, Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: A randomized clinical trial, JAMA Netw. Open, doi:10.1001/jamanetworkopen.2020.8857
Boulware, A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19, N. Engl. J. Med
Brasil, Tecnologia Secretaria de Ciência, Inovação e Insumos Estratégicos em Saúde
Cavalcanti, Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19, N. Engl. J. Med, doi:10.1056/NEJMoa2019014
Chen, Efficacy of hydroxychloroquine in patients with COVID-19: Results of a randomized clinical trial, doi:10.1101/2020.03.22.20040758
Desai, Gyawali, Endpoints used in phase III randomized controlled trials of treatment options for COVID-19, EClinical-Medicine, doi:10.1016/j.eclinm.2020.100403
Dong, Du, Gardner, An interactive web-based dashboard to track COVID-19 in real time, Lancet. Infect. Dis, doi:10.1016/S1473-3099(20)30120-1
Furtado, Azithromycin in addition to standard of care versus standard of care alone in the treatment of patients admitted to the hospital with severe COVID-19 in Brazil (COALITION II): A randomised clinical trial, Lancet, doi:10.1016/s0140-6736(20)31862-6
Geleris, Observational study of hydroxychloroquine in hospitalized patients with Covid-19, N. Engl. J. Med, doi:10.1056/NEJMoa2012410
Hoffmann, Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2, Nature, doi:10.1038/s41586-020-2575-3
Horby, Dexamethasone in hospitalized patients with Covid-19: Preliminary Report, N. Engl. J. Med, doi:10.1056/NEJMoa2021436
Horby, Effect of hydroxychloroquine in hospitalized patients with covid-19, N. Engl. J. Med, doi:10.1056/NEJMoa2022926
Imagem, Departamento Científico -CBR. Departamento de Radiologia Torácica
Kaddoura, COVID-19 Therapeutic Options Under Investigation, Front. Pharmacol, doi:10.3389/fphar.2020.01196
Liang, Development and validation of a clinical risk score to predict the occurrence of critical illness in hospitalized patients with COVID-19, JAMA Intern. Med, doi:10.1001/jamainternmed.2020.2033
Mahmoudi, Sadigh-Eteghad, Salehi-Pourmehr, Gharekhani, Ziaee, Nephrotoxicity of chloroquine and hydroxychloroquine in COVID-19 Patients, Infect. Dis
Marshall, A minimal common outcome measure set for COVID-19 clinical research, Lancet. Infect. Dis, doi:10.1016/S1473-3099(20)30483-7
Mgh, None, Massachusetts General Hospital COVID-19 Treatment Guidance Version
Perricone, The anti-viral facet of anti-rheumatic drugs: Lessons from COVID-19, J. Autoimmun, doi:10.1016/j.jaut.2020.102468
Sanders, Monogue, Jodlowski, Cutrell, Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review, JAMA, doi:10.1001/jama.2020.6019
Savarino, Boelaert, Cassone, Majori, Cauda, Effects of chloroquine on viral infections: An old drug against today's diseases, Lancet. Infect. Dis, doi:10.1016/S1473-3099(03)00806-5
Schrezenmeier, Dörner, Mechanisms of action of hydroxychloroquine and chloroquine: Implications for rheumatology, Nat. Rev. Rheumatol, doi:10.1038/s41584-020-0372-x
Tang, Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial, BMJ
Ustün, Developing the World Health Organization disability assessment schedule 2.0, Bul. World Health Organ, doi:10.2471/blt.09.067231
Who, Measuring Health and Disability: Manual for WHO Disability Assessment Schedule, whodas
Late treatment
is less effective
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Vaccines and treatments are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop